A185263 Triangle T(n,k) read by rows: coefficients (in compressed forms) in order of decreasing exponents of polynomials p_n(t) related to Hultman numbers.
1, 1, 1, 1, 1, 5, 1, 15, 8, 1, 35, 84, 1, 70, 469, 180, 1, 126, 1869, 3044, 1, 210, 5985, 26060, 8064, 1, 330, 16401, 152900, 193248, 1, 495, 39963, 696905, 2286636, 604800, 1, 715, 88803, 2641925, 18128396, 19056960, 1, 1001, 183183, 8691683, 109425316, 292271616, 68428800, 1, 1365, 355355, 25537655, 539651112, 2961802480, 2699672832
Offset: 0
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 -----+--------------------------------------------------- 0 | 1 1 | 1 2 | 1 1 3 | 1 5 4 | 1 15 8 5 | 1 35 84 6 | 1 70 469 180 7 | 1 126 1869 3044 8 | 1 210 5985 26060 8064 9 | 1 330 16401 152900 193248 10 | 1 495 39963 696905 2286636 604800 11 | 1 715 88803 2641925 18128396 19056960 12 | 1 1001 183183 8691683 109425316 292271616 68428800 ... Polynomials p_n(t): p_0 = t; p_1 = t^2; p_2 = t^3 + t; p_3 = t^4 + 5*t^2; p_4 = t^5 + 15*t^3 + 8*t; p_5 = t^6 + 35*t^4 + 84*t^2; p_6 = t^7 + 70*t^5 + 469*t^3 + 180*t; p_7 = t^8 + 126*t^6 + 1869*t^4 + 3044*t^2; ... A(x;t) = t + t^2*x/1! + (t^3 + t)*x^2/2! + (t^4 + 5*t^2)*x^3/3! + ...
Links
- Gheorghe Coserea, Rows n = 0..202, flattened
- Nikita Alexeev and Peter Zograf, Hultman numbers, polygon gluings and matrix integrals, arXiv preprint arXiv:1111.3061 [math.PR], 2011.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Abs[StirlingS1[n+2, n-2k+1]]/Binomial[n+2, 2]; Table[T[n, k], {n, 0, 13}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Aug 12 2018 *)
-
PARI
seq(N) = { my(p=vector(N), t='t, v); p[1] = t^2; p[2] = t^3 + t; for (n=3, N, p[n] = ((2*n+1)*t*p[n-1] + (n-1)*(n^2-t^2)*p[n-2])/(n+2)); v = vector(#p, n, vector(1+n\2, k, polcoeff(p[n], n+1-2*(k-1)))); concat([[1]], v); }; concat(seq(13))
-
PARI
N=14; x='x+O('x^(N+1)); concat(apply(p->select(a->a!=0, Vec(p)), Vec(serlaplace(((1-x)^(-t) - (1+x)^t)/x^2))))
-
PARI
T(n,k) = -stirling(n+2, n+1-2*k, 1)/binomial(n+2,2); concat(1, concat(vector(13, n, vector(1+n\2, k, T(n, k-1))))) \\ Gheorghe Coserea, Jan 29 2018
Formula
From Gheorghe Coserea, Jan 29 2018: (Start)
p(n) = Sum_{k=0..floor(n/2)} T(n,k)*t^(n+1-2*k) satisfies (n+2)*p(n) = (2*n+1)*t*p(n-1) + (n-1)*(n^2-t^2)*p(n-2), n >= 2. (th. 3, (iii))
E.g.f. A(x;t) = Sum_{n>=0} p(n)*x^n/n! = ((1-x)^(-t) - (1+x)^t)/x^2. (th. 3, (i))
T(n,k) = -Stirling1(n+2, n+1-2*k)/binomial(n+2,2), where Stirling1(n,k) is defined by A048994.
n-th row polynomial R(n,x) satisfies x*R(n,x^2) = (1/2)*( P(n+1,x) - P(n+1,-x) )/ binomial(n+2,2), where P(k,x) = (1 + x)*(1 + 2*x) * ... *(1 + k*x). - Peter Bala, May 14 2023
Extensions
More terms from Gheorghe Coserea, Jan 29 2018
Comments