cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185263 Triangle T(n,k) read by rows: coefficients (in compressed forms) in order of decreasing exponents of polynomials p_n(t) related to Hultman numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 15, 8, 1, 35, 84, 1, 70, 469, 180, 1, 126, 1869, 3044, 1, 210, 5985, 26060, 8064, 1, 330, 16401, 152900, 193248, 1, 495, 39963, 696905, 2286636, 604800, 1, 715, 88803, 2641925, 18128396, 19056960, 1, 1001, 183183, 8691683, 109425316, 292271616, 68428800, 1, 1365, 355355, 25537655, 539651112, 2961802480, 2699672832
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2012

Keywords

Comments

Row n contains floor(n/2) + 1 terms.

Examples

			Triangle begins:
  n\k| 0    1      2       3         4         5        6
-----+---------------------------------------------------
   0 | 1
   1 | 1
   2 | 1    1
   3 | 1    5
   4 | 1   15      8
   5 | 1   35     84
   6 | 1   70    469     180
   7 | 1  126   1869    3044
   8 | 1  210   5985   26060      8064
   9 | 1  330  16401  152900    193248
  10 | 1  495  39963  696905   2286636    604800
  11 | 1  715  88803 2641925  18128396  19056960
  12 | 1 1001 183183 8691683 109425316 292271616 68428800
  ...
Polynomials p_n(t):
  p_0 = t;
  p_1 = t^2;
  p_2 = t^3 +     t;
  p_3 = t^4 +   5*t^2;
  p_4 = t^5 +  15*t^3 +    8*t;
  p_5 = t^6 +  35*t^4 +   84*t^2;
  p_6 = t^7 +  70*t^5 +  469*t^3 +  180*t;
  p_7 = t^8 + 126*t^6 + 1869*t^4 + 3044*t^2;
  ...
A(x;t) = t + t^2*x/1! + (t^3 + t)*x^2/2! + (t^4 + 5*t^2)*x^3/3! + ...
		

Crossrefs

For uncompressed form of polynomial coefficients, in order of increasing powers, see A164652.

Programs

  • Mathematica
    T[n_, k_] := Abs[StirlingS1[n+2, n-2k+1]]/Binomial[n+2, 2];
    Table[T[n, k], {n, 0, 13}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Aug 12 2018 *)
  • PARI
    seq(N) = {
      my(p=vector(N), t='t, v); p[1] = t^2; p[2] = t^3 + t;
      for (n=3, N,
        p[n] = ((2*n+1)*t*p[n-1] + (n-1)*(n^2-t^2)*p[n-2])/(n+2));
      v = vector(#p, n, vector(1+n\2, k, polcoeff(p[n], n+1-2*(k-1))));
      concat([[1]], v);
    };
    concat(seq(13))
    
  • PARI
    N=14; x='x+O('x^(N+1));
    concat(apply(p->select(a->a!=0, Vec(p)), Vec(serlaplace(((1-x)^(-t) - (1+x)^t)/x^2))))
    
  • PARI
    T(n,k) = -stirling(n+2, n+1-2*k, 1)/binomial(n+2,2);
    concat(1, concat(vector(13, n, vector(1+n\2, k, T(n, k-1)))))
    \\ Gheorghe Coserea, Jan 29 2018

Formula

From Gheorghe Coserea, Jan 29 2018: (Start)
p(n) = Sum_{k=0..floor(n/2)} T(n,k)*t^(n+1-2*k) satisfies (n+2)*p(n) = (2*n+1)*t*p(n-1) + (n-1)*(n^2-t^2)*p(n-2), n >= 2. (th. 3, (iii))
E.g.f. A(x;t) = Sum_{n>=0} p(n)*x^n/n! = ((1-x)^(-t) - (1+x)^t)/x^2. (th. 3, (i))
T(n,k) = -Stirling1(n+2, n+1-2*k)/binomial(n+2,2), where Stirling1(n,k) is defined by A048994.
A000142(n) = p(n)(1), A052572(n) = p(n)(2) for n > 0, A060593(n) = T(2*n, n) for n > 0. (End)
n-th row polynomial R(n,x) satisfies x*R(n,x^2) = (1/2)*( P(n+1,x) - P(n+1,-x) )/ binomial(n+2,2), where P(k,x) = (1 + x)*(1 + 2*x) * ... *(1 + k*x). - Peter Bala, May 14 2023

Extensions

More terms from Gheorghe Coserea, Jan 29 2018