cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185280 Decimal expansion of a constant appearing in the solution of Polya's 2D drunkard problem.

Original entry on oeis.org

8, 8, 2, 5, 4, 2, 4, 0, 0, 6, 1, 0, 6, 0, 6, 3, 7, 3, 5, 8, 5, 8, 2, 5, 7, 2, 8, 4, 7, 1, 9, 9, 0, 7, 6, 3, 9, 3, 0, 7, 5, 8, 9, 9, 4, 9, 1, 8, 6, 2, 1, 8, 8, 1, 9, 5, 7, 0, 5, 2, 9, 3, 4, 8, 2, 8, 4, 8, 7, 0, 6, 8, 1, 8, 6, 7, 4, 6, 7, 2, 9, 9, 9, 1, 9, 7, 2, 4, 4, 7, 4, 1, 5, 8, 7, 0, 2, 2, 3, 5, 5, 4, 5, 9, 3
Offset: 0

Views

Author

Jean-François Alcover, Apr 23 2013

Keywords

Examples

			0.882542400610606373585825728471990763930758994918621881957052934828487068186...
		

Crossrefs

Programs

  • Mathematica
    1+(4*Log[2]-Pi)/Pi // N[#, 100]& // RealDigits // First
  • PARI
    4*log(2)/Pi \\ Michel Marcus, Jul 28 2016

Formula

1 + Sum_{n>=1} binomial(2*n, n)^2/16^n - 1/(Pi*n).
Equals 1 + (4*log(2) - Pi)/Pi.
Equals 4*log(2)/Pi. - Michel Marcus, Jul 28 2016

Extensions

a(99) corrected by Georg Fischer, Jul 12 2021