cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185301 G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n)^k * x^(n*k) / n ).

Original entry on oeis.org

1, 1, 3, 5, 14, 20, 59, 83, 229, 350, 878, 1302, 3479, 5068, 12640, 19357, 47547, 71173, 175029, 262445, 635297, 966680, 2288213, 3470143, 8266788, 12507003, 29283071, 44756825, 104067224, 158535387, 367088494, 559952784, 1287857188, 1971948577
Offset: 0

Views

Author

Paul D. Hanna, Jan 25 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 14*x^4 + 20*x^5 + 59*x^6 + 83*x^7 +...
such that, by definition:
log(A(x)) = (x + x^2 + x^3 + x^4 +...+ x^k +...)/1
 + (3*x^2 + 9*x^4 + 27*x^6 + 81*x^8 +...+ 3^k*x^(2*k) +...)/2
 + (4*x^3 + 16*x^6 + 64*x^9 + 256*x^12 +...+ 4^k*x^(3*k) +...)/3
 + (7*x^4 + 49*x^8 + 343*x^12 + 2401*x^16 +...+ 7^k*x^(4*k) +...)/4 +...
= x + 5*x^2/2 + 7*x^3/3 + 29*x^4/4 + 11*x^5/5 + 131*x^6/6 +...+ A185302(n)*x^n/n +...
		

Crossrefs

Cf. A185302.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=1, n\m, sigma(m)^k*x^(m*k)/m),x*O(x^n))), n)}

Formula

Logarithmic derivative yields A185302.