cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185305 Triangular array E(n,k) counting not necessarily connected k-regular simple graphs on n vertices with girth at least 5.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 2, 0, 1, 1, 3, 2, 1, 0, 3, 0, 1, 1, 4, 9, 1, 0, 5, 0, 1, 1, 6, 49, 1, 0, 7, 0, 1, 1, 9, 455, 1, 0, 10, 0, 1, 1, 1, 13, 5784, 2, 1, 0, 15, 0, 8, 1, 1, 18, 90940, 131, 1, 0, 21, 0, 3917, 1, 1, 26, 1620491, 123859
Offset: 1

Views

Author

Jason Kimberley, Feb 21 2013

Keywords

Comments

Row sums give A185315.

Examples

			01: 1;
02: 1, 1;
03: 1, 0;
04: 1, 1;
05: 1, 0, 1;
06: 1, 1, 1;
07: 1, 0, 1;
08: 1, 1, 1;
09: 1, 0, 1;
10: 1, 1, 2, 1;
11: 1, 0, 2, 0;
12: 1, 1, 3, 2;
13: 1, 0, 3, 0;
14: 1, 1, 4, 9;
15: 1, 0, 5, 0;
16: 1, 1, 6, 49;
17: 1, 0, 7, 0;
18: 1, 1, 9, 455;
19: 1, 0, 10, 0, 1;
20: 1, 1, 13, 5784, 2;
21: 1, 0, 15, 0, 8;
22: 1, 1, 18, 90940, 131;
23: 1, 0, 21, 0, 3917;
24: 1, 1, 26, 1620491, 123859;
25: 1, 0, 30, 0, 4131991;
26: 1, 1, 36, 31478649, 132160608;
27: 1, 0, 42, 0, 4018022149;
28: 1, 1, 50, 656784488, 118369811960;
		

Crossrefs

Not necessarily connected k-regular simple graphs with girth at least 5: A185315 (any k), this sequence (triangle); specified degree k: A185325 (k=2), A185335 (k=3).

Formula

E(n,k) = A186715(n,k) + A185205(n,k).