A185321 Carmichael numbers congruent to 3 modulo 4.
8911, 1024651, 1152271, 5481451, 10267951, 14913991, 64377991, 67902031, 139952671, 178482151, 368113411, 395044651, 612816751, 652969351, 743404663, 1419339691, 1588247851, 2000436751, 2199931651, 2560600351, 3102234751, 3215031751, 3411338491, 4340265931
Offset: 1
Keywords
Links
- Donovan Johnson and Charles R Greathouse IV, Table of n, a(n) for n = 1..15447 (first 6838 terms from Johnson)
- Charles R Greathouse IV, GP script to compute terms
- Charles R Greathouse IV, Alternate GP script to compute terms
- R. G. E. Pinch, The Carmichael numbers up to 10^15, Mathematics of Computation 61:203 (1993), pp. 381-391.
- Thomas Wright, Infinitely many Carmichael numbers in arithmetic progressions, Bull. London Math. Soc. 45:5 (2013), pp. 943-952.
Programs
-
Mathematica
Select[4Range[10^4] + 3, (!PrimeQ[#] && IntegerQ[(# - 1)/CarmichaelLambda[#]]) &]
-
PARI
Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1 p=5;forprime(q=7,1e7,forstep(n=if(p%4==3,p+4,p+2),q-2,4,if(Korselt(n),print1(n", ")));p=q) \\ Charles R Greathouse IV, Jan 27 2012
Extensions
a(7)-a(40) from Charles R Greathouse IV, Jan 27 2012
Comments