cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A257643 Carmichael numbers k such that k-1 is squarefree.

Original entry on oeis.org

139952671, 74689102411, 121254376891, 187054437571, 231440115271, 236359158267, 303008129971, 306252926071, 380574791611, 426951670531, 556303918171, 639109148371, 660950414671, 1101375141511, 1483826843731, 1487491483171, 1861175569891, 2794268624071
Offset: 1

Views

Author

Thomas Ordowski, Nov 05 2015

Keywords

Comments

If k is a Carmichael number with k-1 squarefree, then gcd(phi(k),k-1) = lambda(k), i.e., Carmichael lambda function A002322.

Crossrefs

Subsequence of A185321.

Programs

  • PARI
    t(n) = my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
    is(n) = n%2 && !isprime(n) && t(n) && n>1;
    isok(n) = is(n) && issquarefree(n-1); \\ Altug Alkan, Nov 06 2015
    
  • PARI
    is(n) = my(f=factor(n)); for(i=1, #f~, if(f[i,1]%4<3 || f[i, 2]>1 || (n-1)%(f[i, 1]-1), return(0))); !isprime(n) && issquarefree(n-1)
    is(n) = n%2 && !isprime(n) && t(n) && n>1 \\ Charles R Greathouse IV, Nov 09 2015

A329468 Carmichael numbers all of whose prime factors are congruent to 3 modulo 4.

Original entry on oeis.org

8911, 1024651, 1152271, 1773289, 5481451, 8830801, 9585541, 10267951, 14913991, 15888313, 26474581, 40917241, 45877861, 64377991, 67902031, 72108421, 72286501, 81926461, 94536001, 104852881, 111291181, 129762001, 139592101, 139952671, 178482151, 213835861, 368113411
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2019

Keywords

Comments

Galbraith et al. (2019) proved that for a Carmichael number m, the number of bases below m in which m is a strong pseudoprime is S(m) = A071294((m-1)/2) <= phi(m)/2^(omega(m)-1), with equality when m is a term of this sequence, where phi is the Euler totient function (A000010) and omega(m) is the number of distinct prime factors of m (A001221).
The corresponding values of S(a(n)) are 1782, 240570, 277830, 176418, 1316250, 882090, 984150, 2515590, 3611790, 1587762, ...
The least term with 3, 4, 5, ... prime factors is 8911, 1773289, 1419339691, 4077957961, 3475350807391, 440515336876021, 574539328092938671, 2426698123549677901, ...

Examples

			8911 = 7 * 19 * 67 is a term since it is a Carmichael number, and 7 == 19 == 67 == 3 (mod 4).
		

Crossrefs

Supersequence of A185321.

Programs

  • Mathematica
    aQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]] && AllTrue[ FactorInteger[n][[;;,1]], Mod[#, 4] == 3 &]; Select[Range[2*10^6], aQ]

A267462 Carmichael numbers that are not of the form x^2 + y^2 + z^2 where x, y and z are integers.

Original entry on oeis.org

8911, 1152271, 10267951, 14913991, 64377991, 67902031, 139952671, 178482151, 612816751, 652969351, 743404663, 2000436751, 2560600351, 3102234751, 3215031751, 5615659951, 5883081751, 7773873751, 8863329511, 9462932431, 10501586767, 11335174831, 12191597551, 13946829751, 16157879263, 21046047751
Offset: 1

Views

Author

Altug Alkan, Jan 15 2016

Keywords

Comments

Intersection of A002997 and A004215.
Carmichael numbers that are the sum of 4 but no fewer nonzero squares.
Carmichael numbers of the form 8*k + 7.
Subsequence of A185321.
Carmichael numbers of the form x^2 + y^2 + z^2 where x, y and z are integers are 561, 1105, 1729, 2465, 2821, 6601, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461, 530881, 552721, ...

Examples

			Carmichael number 561 is not a term of this sequence because 561 = 2^2 + 14^2 + 19^2.
Carmichael number 8911 is a term because there is no integer values of x, y and z for the equation 8911 = x^2 + y^2 + z^2.
Carmichael number 10585 is not a term because 10585 = 0^2 + 37^2 + 96^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n)
      local q;
      if isprime(n) then return false fi;
      if 2 &^ (n-1) mod n <> 1 then return false fi;
      for q in ifactors(n)[2] do
        if q[2] > 1 or (n-1) mod (q[1]-1) <> 0 then return false fi
        od;
        true
    end proc:
    select(filter, [seq(8*k+7, k=0..10^7)]); # Robert Israel, Jan 18 2016
  • Mathematica
    Select[8*Range[1,8000000]+7, CompositeQ[#] && Divisible[#-1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jun 26 2019 *)
  • PARI
    isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; }
    isA002997(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
    for(n=0, 1e10, if(isA002997(n) && isA004215(n), print1(n, ", ")));
    
  • PARI
    isA002997(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
    for(n=0, 1e10, if(isA002997(k=8*n+7), print1(k, ", ")));

A292021 Lucas-Carmichael numbers that are congruent to 1 (mod 4).

Original entry on oeis.org

20705, 80189, 120581, 1162349, 7274249, 8734109, 10260809, 14658349, 49412285, 90393029, 105818129, 110066669, 125532329, 256074029, 362868329, 366648281, 395032609, 434886605, 503733257, 558705449, 563601257, 574342145, 640057109, 939989609, 962529749
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2017

Keywords

Comments

Most Lucas-Carmichael numbers are congruent to 3 (mod 4). Of the 9967 numbers less than 10^12 only 198 are congruent to 1 (mod 4).
Analogous to A185321 - Carmichael numbers that are congruent to 3 (mod 4).

Crossrefs

Intersection of A006972 and A016813.

Programs

  • Mathematica
    a=Select[Range[2, 10^6],!PrimeQ[#] && Union[Transpose[FactorInteger[#]][[2]]] == {1} && Union[Mod[# + 1, Transpose[FactorInteger[#]][[1]] + 1]]=={0} &] ;Select[a,Mod[#,4]==1 &] (* after Richard Pinch and Jeffrey Shallit at A006972 *)
Showing 1-4 of 4 results.