cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185350 Number of parts in all partitions of n in which no part occurs more than twice.

Original entry on oeis.org

0, 1, 3, 3, 8, 11, 17, 23, 36, 48, 69, 88, 125, 157, 212, 271, 356, 445, 574, 711, 906, 1118, 1400, 1711, 2125, 2583, 3171, 3828, 4666, 5604, 6777, 8095, 9730, 11567, 13815, 16357, 19429, 22910, 27077, 31801, 37432, 43802, 51338, 59871, 69914, 81273, 94562
Offset: 0

Views

Author

Alois P. Heinz, Jan 21 2013

Keywords

Examples

			a(6) = 17: [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [2,2,1,1].
a(7) = 23: [7], [6,1], [5,2], [4,3], [5,1,1], [4,2,1], [3,3,1], [3,2,2], [3,2,1,1].
		

Crossrefs

Column k=2 of A210485.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, 2))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[i<1, {0, 0}, Sum[b[n - i j, i - 1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]] j}, {j, 0, Min[n/i, k]} ] ] ];
    a[n_] := b[n, n, 2][[2]];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
    Table[Length[Flatten[Select[IntegerPartitions[n],Max[Length/@Split[#]]<3&]]],{n,0,50}] (* Harvey P. Dale, Jul 04 2023 *)

Formula

a(n) = Sum_{k>=0} k*A209318(n,k).
a(n) ~ log(3) * exp(2*Pi*sqrt(n)/3) / (2*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018