cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185359 Numbers k such that {m^m mod k: m >= 1} is not purely periodic.

Original entry on oeis.org

8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 81, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 162, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 243, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 324, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400
Offset: 1

Views

Author

Keywords

Comments

k is a term if and only if k = Product_{i=1..t} p_i^e_i with e_i > p_i for some i.
A182938(a(n)) = 0. - Reinhard Zumkeller, Feb 18 2012
The asymptotic density of this sequence is 1 - Product_{p prime} 1 - 1/p^(p+1) = 0.13585792767780221591... - Amiram Eldar, Nov 24 2020

Crossrefs

Cf. A027748, A124010, A008590 (subsequence), A185358, A207481 (complement).

Programs

  • Haskell
    a185359 n = a185359_list !! (n-1)
    a185359_list = [x | x <- [1..], or $ zipWith (<)
                        (a027748_row x) (map toInteger $ a124010_row x)]
    -- Reinhard Zumkeller, Feb 18 2012
  • Mathematica
    j[p_,e_]:=e>p;j[n_]:={False}==Union@Module[{fa=FactorInteger[n]},Table[j[fa[[i,1]],fa[[i,2]]],{i,1,Length[fa]}]];Select[Range[1000],!j[#]&]