A185394 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+193)^2 = y^2.
0, 152, 203, 579, 1403, 1692, 3860, 8652, 10335, 22967, 50895, 60704, 134328, 297104, 354275, 783387, 1732115, 2065332, 4566380, 10095972, 12038103, 26615279, 58844103, 70163672, 155125680, 342969032, 408944315, 904139187, 1998970475, 2383502604, 5269709828
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Cf. A206426.
Programs
-
Mathematica
LinearRecurrence[{1,0,6,-6,0,-1,1},{0,152,203,579,1403,1692,3860},70]
-
PARI
concat(0, Vec(x^2*(88*x^5+17*x^4+88*x^3-376*x^2-51*x-152)/((x-1)*(x^6-6*x^3+1)) + O(x^100))) \\ Colin Barker, May 18 2015
Formula
G.f.: x^2*(152+51*x+376*x^2-88*x^3-17*x^4-88*x^5)/((1-x)*(1-6*x^3+x^6)). - Colin Barker, Aug 04 2012