A185395 a(3n) = n^2, a(3n+1) = a(3n+2) = 3*n*(n+1)/2.
0, 0, 0, 1, 3, 3, 4, 9, 9, 9, 18, 18, 16, 30, 30, 25, 45, 45, 36, 63, 63, 49, 84, 84, 64, 108, 108, 81, 135, 135, 100, 165, 165, 121, 198, 198, 144, 234, 234, 169, 273, 273, 196, 315, 315, 225, 360, 360, 256
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{0,0,0,1,3,3,4,9,9},50] (* Harvey P. Dale, Jan 23 2013 *)
-
PARI
x='x+O('x^50); concat([0, 0, 0], Vec((x*(1+x)/(1-x^3))^3)) \\ G. C. Greubel, Jun 29 2017
Formula
G.f.: (x*(1+x)/(1-x^3))^3.
From Amiram Eldar, May 10 2025: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/6 + 4/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/12 (A072691). (End)
Comments