A185415 Table of coefficients of a polynomial sequence of binomial type related to A080635.
1, 0, 1, 2, 0, 1, 0, 8, 0, 1, 18, 0, 20, 0, 1, 0, 148, 0, 40, 0, 1, 378, 0, 658, 0, 70, 0, 1, 0, 5040, 0, 2128, 0, 112, 0, 1, 14562, 0, 33992, 0, 5628, 0, 168, 0, 1, 0, 277164, 0, 158480, 0, 12936, 0, 240, 0, 1
Offset: 1
Examples
Triangle begins: n\k|....1......2......3......4......5......6......7......8 ========================================================== ..1|....1 ..2|....0......1 ..3|....2......0......1 ..4|....0......8......0......1 ..5|...18......0.....20......0......1 ..6|....0....148......0.....40......0......1.. ..7|..378......0....658......0.....70......0......1 ..8|....0...5040......0...2128......0....112......0......1
References
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees
Programs
-
Maple
#A185415 P := proc(n,x) description 'polynomial sequence P(n,x)' if n = 0 return 1 else return x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1)) end proc: with(PolynomialTools): for n from 1 to 10 CoefficientList(P(n,x),x); end do;
-
Mathematica
p[0][x_] = 1; p[n_][x_] := p[n][x] = x*(p[n-1][x-1] - p[n-1][x] + p[n-1][x+1]) // Expand; row[n_] := CoefficientList[ p[n][x], x]; Table[row[n] // Rest, {n, 1, 10}] // Flatten (* Jean-François Alcover, Sep 11 2012 *)
Formula
GENERATING FUNCTION
The e.g.f. is
(1)... F(x, t) = E(t)^x = Sum_{n >= 0} P(n, x) * t^n/n!,
where
E(t) = 1/2+sqrt(3)/2*tan[sqrt(3)/2*t+Pi/6] = 1 + t + t^2/2! + 3*t^3/3! + 9*t^4/4! + ... is the e.g.f. for A080635.
ROW POLYNOMIALS
One easily checks that
... d/dt(F(x,t)) = x*(F(x-1,t)-F(x,t)+F(x+1,t))
and hence the row generating polynomials P(n,x) satisfy the recurrence relation
(2)... P(n+1,x) = x*{P(n,x-1)-P(n,x)+P(n,x+1)}.
RELATIONS WITH OTHER SEQUENCES
A080635(n) = P(n,1).
A185422(n,k) = 1/k!*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*P(n,j).
A185423(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*P(n,j).
Comments