A185416 Square array, read by antidiagonals, used to recursively calculate A080635.
1, 1, 1, 3, 2, 1, 9, 6, 3, 1, 39, 24, 11, 4, 1, 189, 114, 51, 18, 5, 1, 1107, 648, 279, 96, 27, 6, 1, 7281, 4194, 1767, 594, 165, 38, 7, 1, 54351, 30816, 12699, 4176, 1143, 264, 51, 8, 1, 448821, 251586, 101979, 32922, 8865, 2034, 399, 66, 9, 1
Offset: 1
Examples
Triangle begins n\k|....1......2......3......4......5.......6.......7 ===================================================== ..1|....1......1......1......1......1.......1.......1 ..2|....1......2......3......4......5.......6.......7 ..3|....3......6.....11.....18.....27......38......51 ..4|....9.....24.....51.....96....165.....264.....399 ..5|...39....114....279....594...1143....2034....3399 ..6|..189....648...1767...4176...8865...17304...31563 ..7|.1107...4194..12699..32922..76203..161442..318339 .. Examples of the recurrence: T(4,4) = 96 = 3*T(3,3)-4*T(3,4)+5*T(3,5) = 3*11-4*18+ 5*27; T(5,1) = 39 = 0*T(4,0)-1*T(4,1)+2*T(4,2) = -1*9+2*24;
Programs
Formula
(1)... T(n,k) = P(n,k)/k, where P(n,x) are the polynomials defined in A185415.
Comments