A185417 Table of coefficients of a polynomial sequence related to the Springer numbers.
1, 1, 2, 3, 4, 4, 11, 26, 12, 8, 57, 120, 136, 32, 16, 361, 970, 760, 560, 80, 32, 2763, 7052, 8860, 3680, 2000, 192, 64, 24611, 72530, 72884, 58520, 15120, 6496, 448, 128, 250737, 716528, 976464, 538048, 314720, 55552, 19712, 1024, 256
Offset: 1
Examples
Table begin n\k|.....0.....1.....2.....3.....4.....5......6 =============================================== 0..|.....1 1..|.....1.....2 2..|.....3.....4.....4 3..|....11....26....12.....8 4..|....57...120...136....32...16 5..|...361...970...760...560...80.....32 6..|..2763..7052..8860..3680..2000...192....64 ...
Links
- Peter Bala, The zeros of the row polynomials of A185417
Crossrefs
Programs
-
Maple
#A185417 S := proc(n,x) option remember; description 'polynomials S(n,x)' if n = 0 return 1 else return x*S(n-1,x-1)+(x+1)*S(n-1,x+1) end proc: with(PolynomialTools): for n from 1 to 10 CoefficientList(S(n,x),x); end do;
-
Mathematica
S[0, ] = 1; S[n, x_] := S[n, x] = x*S[n-1, x-1] + (x+1)*S[n-1, x+1]; Table[ CoefficientList[S[n, x], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 15 2015 *)
Formula
E.g.f: F(x,t) = 1/(cos(t)-sin(t))*(tan(2*t)+sec(2*t))^x
= (cos(t)+sin(t))^x/(cos(t)-sin(t))^(x+1)
= 1 + (2*x+1)*t + (4*x^2+4*x+3)*t^2/2! + ....
Note that (tan(t)+sec(t))^x is the e.g.f for table A147309.
ROW POLYNOMIALS
The easily checked identity d/dt F(x,t) = x*F(x-1,t)+(x+1)*F(x+1,t) shows that the row generating polynomials of this table are the polynomials S(n,x) described in the Comments section above.
The polynomials S(n,-x) satisfy a Riemann hypothesis: that is, the zeros of S(n,-x) lie on the vertical line Re(x) = 1/2 in the complex plane - see the link.
RELATION WITH OTHER SEQUENCES
1st column [1,1,3,11,57,...] is A001586.
Row sums sequence [1,3,11,57,...] is also A001586.
For n>=1, the values 1/2^n*P(2*n,-1/2) = [1,7,139,5473,...] appear to be A126156.
Comments