cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185424 Numerators of generalized Bernoulli numbers associated with the zigzag numbers A000111.

Original entry on oeis.org

1, -1, 1, -1, 19, -5, 253, -61, 3319, -1385, 222557, -50521, 422152729, -2702765, 59833795, -199360981, 439264083023, -19391512145, 76632373664299, -2404879675441, 4432283799315809, -370371188237525
Offset: 0

Views

Author

Peter Bala, Feb 18 2011

Keywords

Comments

DEFINITION
Let E(t) = sec(t)+tan(t) denote the generating function for the zigzag numbers A000111. The zigzag Bernoulli numbers, denoted ZB(n), are defined by means of the generating function
(1)... log E(t)/(E(t)-1) = sum {n = 0..inf} ZB(n)*t^n/n!.
Notice that if we were to take E(t) equal to exp(t) then (1) would be the defining function for the classical Bernoulli numbers B_n. The first few even-indexed values of ZB(n) are
....n..|..0...2.....4.......6........8..........10...........12....
===================================================================
.ZB(n).|..1..1/6..19/30..253/42..3319/30..222557/66..422152729/2730
while the odd-indexed values begin
....n..|. ..1......3......5.......7........9.........11..
=========================================================
.ZB(n).|. -1/2...-1/2...-5/2...-61/2...-1385/2...-50521/2
The present sequence gives the numerators of the zigzag Bernoulli numbers. It is not difficult to show that the odd-indexed value ZB(2*n+1) equals -1/2*A000364(n). The numerators of the even-indexed values ZB(2*n) are shown separately in A185425.
VON STAUDT-CLAUSEN THEOREM
The following analog of the von Staudt-Clausen theorem holds:
(2)... ZB(2*n) + 1/2 + S(1) + (-1)^(n+1)*S(3) equals an integer, where
... S(1) = sum {prime p, p = 1 (mod 4), p-1|2*n} 1/p,
... S(3) = sum {prime p, p = 3 (mod 4), p-1|2*n} 1/p.
For example,
(3)... ZB(12) + 1/2 + (1/5+1/13) - (1/3+1/7) = 154635.
Further examples are given below.

Examples

			Examples of von Staudt and Clausen's theorem for ZB(2*n):
ZB(2) = 1/6 = 1 - 1/2 - 1/3;
ZB(4) = 19/30 = 1 - 1/2 + 1/3 - 1/5;
ZB(6) = 253/42 = 7 - 1/2 - 1/3 - 1/7;
ZB(8) = 3319/30 = 111 - 1/2 + 1/3 - 1/5;
ZB(10) = 222557/66 = 3373 - 1/2 - 1/3 - 1/11.
		

Crossrefs

Sequence of denominators is A141056.

Programs

  • Maple
    #A185424
    a:= n-> numer((-1)^(n*(n-1)/2)*add(binomial(n,k)/(k+1)* bernoulli(n-k) *euler(k), k = 0..n)):
    seq(a(n), n = 0..20);
  • Mathematica
    Numerator[ Range[0, 30]! CoefficientList[ Series[Log(Sec[x]+Tan[x])/(Sec[x] +Tan[x] - 1), {x, 0, 30}], x]]

Formula

SEQUENCE ENTRIES
a(n) = numerator of the rational number ZB(n) where
(1)... ZB(n) = (-1)^(n*(n-1)/2)*sum {k = 0..n} binomial(n,k)/(k+1)* Bernoulli(n- k)*Euler(k).
For odd indices this simplifies to
(2)... ZB(2*n+1) = (-1)^n*Euler(2*n)/2, where Euler(2*n) = A028296(n).
For even indices we have
(3)... ZB(2*n) = (-1)^n*sum {k = 0..n} binomial(2*n,2*k)/(2*k+1)* Bernoulli(2*n- 2*k)*Euler(2*k).
GENERATING FUNCTION
E.g.f:
(4)... log(sec(t)+tan(t))/(sec(t)+tan(t)-1) =
1 -1/2*t +1/6*t^2/2! -1/2*t^3/3! + ....
RELATION WITH ZIGZAG POLYNOMIALS OF A147309
The classical Bernoulli numbers B_n are given by the double sum
(5)... B_n = sum {k=0..n} sum {j=0..k} (-1)^j*binomial(k,j)*j^n/(k+1).
The corresponding formula for the zigzag Bernoulli numbers is
(6)... ZB(n) = sum {k=0..n} sum {j=0..k}(-1)^j*binomial(k,j)*Z(n,j)/(k+1), where Z(n,x) is a zigzag polynomial as defined in A147309. Umbrally, we can express this as
(7)... ZB(n) = Z(n,B), where on the lhs the understanding is that in the expansion of the zigzag polynomial Z(n,x) a term such as c_k*x^k is to be replaced with c_k*B_k. For example, Z(6,x) = 40*x^2+20*x^4+x^6 and so ZB(6) = 40*B_2+20*B_4+B_6 = 40*(1/6)+20*(-1/30)+(1/42) = 253/42.