A185424 Numerators of generalized Bernoulli numbers associated with the zigzag numbers A000111.
1, -1, 1, -1, 19, -5, 253, -61, 3319, -1385, 222557, -50521, 422152729, -2702765, 59833795, -199360981, 439264083023, -19391512145, 76632373664299, -2404879675441, 4432283799315809, -370371188237525
Offset: 0
Examples
Examples of von Staudt and Clausen's theorem for ZB(2*n): ZB(2) = 1/6 = 1 - 1/2 - 1/3; ZB(4) = 19/30 = 1 - 1/2 + 1/3 - 1/5; ZB(6) = 253/42 = 7 - 1/2 - 1/3 - 1/7; ZB(8) = 3319/30 = 111 - 1/2 + 1/3 - 1/5; ZB(10) = 222557/66 = 3373 - 1/2 - 1/3 - 1/11.
Programs
-
Maple
#A185424 a:= n-> numer((-1)^(n*(n-1)/2)*add(binomial(n,k)/(k+1)* bernoulli(n-k) *euler(k), k = 0..n)): seq(a(n), n = 0..20);
-
Mathematica
Numerator[ Range[0, 30]! CoefficientList[ Series[Log(Sec[x]+Tan[x])/(Sec[x] +Tan[x] - 1), {x, 0, 30}], x]]
Formula
SEQUENCE ENTRIES
a(n) = numerator of the rational number ZB(n) where
(1)... ZB(n) = (-1)^(n*(n-1)/2)*sum {k = 0..n} binomial(n,k)/(k+1)* Bernoulli(n- k)*Euler(k).
For odd indices this simplifies to
(2)... ZB(2*n+1) = (-1)^n*Euler(2*n)/2, where Euler(2*n) = A028296(n).
For even indices we have
(3)... ZB(2*n) = (-1)^n*sum {k = 0..n} binomial(2*n,2*k)/(2*k+1)* Bernoulli(2*n- 2*k)*Euler(2*k).
GENERATING FUNCTION
E.g.f:
(4)... log(sec(t)+tan(t))/(sec(t)+tan(t)-1) =
1 -1/2*t +1/6*t^2/2! -1/2*t^3/3! + ....
RELATION WITH ZIGZAG POLYNOMIALS OF A147309
The classical Bernoulli numbers B_n are given by the double sum
(5)... B_n = sum {k=0..n} sum {j=0..k} (-1)^j*binomial(k,j)*j^n/(k+1).
The corresponding formula for the zigzag Bernoulli numbers is
(6)... ZB(n) = sum {k=0..n} sum {j=0..k}(-1)^j*binomial(k,j)*Z(n,j)/(k+1), where Z(n,x) is a zigzag polynomial as defined in A147309. Umbrally, we can express this as
(7)... ZB(n) = Z(n,B), where on the lhs the understanding is that in the expansion of the zigzag polynomial Z(n,x) a term such as c_k*x^k is to be replaced with c_k*B_k. For example, Z(6,x) = 40*x^2+20*x^4+x^6 and so ZB(6) = 40*B_2+20*B_4+B_6 = 40*(1/6)+20*(-1/30)+(1/42) = 253/42.
Comments