cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185425 Bisection of A185424. Numerators of even-indexed generalized Bernoulli numbers associated with the zigzag numbers A000111.

Original entry on oeis.org

1, 1, 19, 253, 3319, 222557, 422152729, 59833795, 439264083023, 76632373664299, 4432283799315809, 317829581058418253, 1297298660169509319229, 696911453333335463719, 28877308885785768720478751, 157040990105362922778773747849
Offset: 0

Views

Author

Peter Bala, Feb 18 2011

Keywords

Comments

Let E(t) = sec(t)+tan(t) denote the generating function for the zigzag numbers A000111. The zigzag Bernoulli numbers, denoted ZB(n), are defined by means of the generating function log E(t)/(E(t)-1) = Sum_{n>=0} ZB(n)*t^n/n!. See formula (1).
The present sequence lists the numerators of ZB(2*n) for n>=0.

Crossrefs

Sequence of denominators is A002445.

Programs

  • Maple
    #A185425
    a := n - > (-1)^n*add (binomial(2*n,2*k)/(2*k+1)* bernoulli(2*n-2*k)*
    euler(2*k), k = 0..n):
    seq(numer(a(n)), n = 0..20);
  • Mathematica
    Numerator[Table[(-1)^n*Sum[Binomial[2*n, 2*k]*BernoulliB[2*(n - k)]* EulerE[2*k]/(2*k + 1), {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Jul 06 2017 *)

Formula

(1)... 1/2*log(sec(t)+tan(t))*(1+sin(t)+cos(t))/(1+sin(t)-cos(t))
= Sum_{n >= 0} ZB(2*n)*t^(2*n)/(2*n)!
= 1 + (1/6)*t^2/2! + (19/30)*t^4/4! + (253/42)*t^6/6! + ....
(2)... ZB(2*n) = (-1)^n*Sum_{k = 0..n} binomial(2*n,2*k)/(2*k+1)* Bernoulli(2*n-2*k)*Euler(2*k).
(3)... a(n) = numerator(ZB(2*n)).