A185727 Integers of the form A145911(k)/(k+1) sorted along increasing k.
0, 2, 1, 5, 2, 8, 1, 11, 4, 14, 5, 17, 2, 20, 7, 23, 8, 26, 3, 29, 10, 32, 11, 35, 4, 38, 13, 41, 14, 44, 5, 47, 16, 50, 17, 53, 6, 56, 19, 59, 20, 62, 7, 65, 22, 68, 23, 71, 8, 74, 25, 77, 26, 80, 9, 83, 28, 86, 29, 89, 10, 92, 31, 95, 32, 98, 11, 101, 34, 104, 35, 107, 12, 110, 37, 113, 38, 116, 13, 119, 40, 122
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A106619 := proc(n) numer(n/(n+18)) ; end proc: A185727 := proc(n) if type(n,'even') then A106619(3*n) ; else A106619(3*n+1) ; end if; end proc: seq(A185727(n),n=0..80) ; # R. J. Mathar, Feb 18 2011
-
Mathematica
CoefficientList[Series[x*(2 + x + 5*x^2 + 2*x^3 + 8*x^4 + x^5 + 7*x^6 + 2*x^7 + 4*x^8 + x^9 + x^10)/((x - 1)^2*(1 + x)^2*(1 + x + x^2)^2*(x^2 - x + 1)^2), {x,0,50}], x] (* G. C. Greubel, Jul 11 2017 *)
-
PARI
x='x+O('x^50); concat([0], Vec(x*(2 + x + 5*x^2 + 2*x^3 + 8*x^4 + x^5 + 7*x^6 + 2*x^7 + 4*x^8 + x^9 + x^10)/((x - 1)^2*(1 + x)^2*(1 + x + x^2)^2*(x^2 - x + 1)^2))) \\ G. C. Greubel, Jul 11 2017
Formula
a(1+2*n) = 2+3*n = A106619(4+6*n).
a(6*n) = n.
From R. J. Mathar, Feb 10 2011: (Start)
a(n)= +2*a(n-6) -a(n-12).
G.f.: x*(2+x +5*x^2 +2*x^3 +8*x^4 +x^5 +7*x ^6 +2*x^7 +4*x^8 +x^9 +x^10) / ( (x-1)^2*(1+x)^2*(1+x+x^2)^2*(x^2-x+1)^2 ). (End)
a(n) = A014682(n) if n is not a multiple of 6. - Paul Curtz, Feb 23 2011
Comments