A185783 Second accumulation array of A185780, by antidiagonals.
1, 6, 3, 20, 20, 6, 50, 70, 44, 10, 105, 180, 160, 80, 15, 196, 385, 420, 300, 130, 21, 336, 728, 910, 800, 500, 196, 28, 540, 1260, 1736, 1750, 1350, 770, 280, 36, 825, 2040, 3024, 3360, 2975, 2100, 1120, 384, 45, 1210, 3135, 4920, 5880, 5740, 4655, 3080, 1560, 510, 55, 1716, 4620, 7590, 9600, 10080, 9016, 6860, 4320, 2100, 660, 66, 2366, 6578, 11220, 14850, 16500, 15876, 13328, 9660, 5850, 2750, 836, 78
Offset: 1
Examples
Northwest corner: 1....6....20....50....105 3....20...70....180...385 6....44...160...420...910 10...80...300...800...1750
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
(See A185780.) f[n_, k_] := Binomial[k + 2, 3]*Binomial[n + 1, 2]*(k*n - n + 2*k + 4)/6; Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 12 2017 *)
Formula
T(n,k) = C(k+2,3)*C(n+1,2)*(k*n-n+2*k+4)/6, k>=1, n>=1.
Comments