cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185812 Riordan array ( 1/(1-x), x*A005043(x) ).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 6, 5, 4, 1, 1, 1, 12, 12, 7, 5, 1, 1, 1, 27, 26, 19, 9, 6, 1, 1, 1, 63, 63, 43, 27, 11, 7, 1, 1, 1, 154, 153, 110, 63, 36, 13, 8, 1, 1, 1, 386, 386, 275, 169, 86, 46, 15, 9, 1, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 05 2011

Keywords

Examples

			Array begins:
  1;
  1,  1;
  1,  1,  1;
  1,  2,  1,  1;
  1,  3,  3,  1,  1;
  1,  6,  5,  4,  1,  1;
  1, 12, 12,  7,  5,  1,  1;
  1, 27, 26, 19,  9,  6,  1,  1;
		

Crossrefs

Cf. A082395, apparently R(n,1), A097332 (row sums). - R. J. Mathar, Feb 10 2011

Programs

  • Maple
    A185812 := proc(n,k) if n = k  or k =0 then 1; else k*add(1/(n-i)*add(binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j),j=k..n-i),i=0..n-k) ; end if; end proc:
    seq(seq(A185812(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 10 2011
  • Mathematica
    r[n_, k_] := k*Sum[Binomial[2*j - k - 1, j - 1]*(-1)^(n - j - i)*Binomial[n - i, j]/(n - i), {i, 0, n - k}, {j, k, n - i}]; r[n_, 0] = 1; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)

Formula

R(n,k) = k*Sum_{i=0..(n-k)} (Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j))/(n-i), k>0.
R(n,0)=1.