cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185815 Exponential Riordan array (log(1/(1-x)), x*A005043(x)).

Original entry on oeis.org

0, 1, 0, 1, 2, 0, 2, 3, 3, 0, 6, 32, 6, 4, 0, 24, 210, 140, 10, 5, 0, 120, 2904, 1170, 400, 15, 6, 0, 720, 41580, 22344, 3990, 910, 21, 7, 0, 5040, 789984, 379680, 98784, 10500, 1792, 28, 8, 0, 40320, 16961616, 8595936, 1930320, 325584, 23436, 3192, 36, 9, 0
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 05 2011

Keywords

Examples

			Array begins:
    0;
    1,     0;
    1,     2,     0;
    2,     3,     3,    0;
    6,    32,     6,    4,   0;
   24,   210,   140,   10,   5,  0;
  120,  2904,  1170,  400,  15,  6, 0;
  720, 41580, 22344, 3990, 910, 21, 7, 0;
		

Programs

  • Maple
    A185815 := proc(n,k) if n = k then 0; elif k = 0 then (n-1)! ; else n!/(k-1)!*add(1/i/(n-i)*add(binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j),j=k..n-i),i=1..n-k) ; end if; end proc:
    seq(seq(A185815(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 09 2011
  • Mathematica
    t[n_, k_] := n!/(k-1)!*Sum[ 1/(i*(n-i))*((-1)^(n+k-i)*(n-i)!*HypergeometricPFQ[ {(k+1)/2, k/2, i+k-n}, {k, k+1}, 4]) / (k!*(n-k-i)!), {i, 1, n-k}]; t[0, 0] = 0; t[n_, 0] := (n-1)!; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 01 2013, after given formula *)

Formula

R(n,k):= (n!/(k-1)!)*Sum_{i=1..(n-k)} (1/(i*(n-i)))*Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j), k>0, R(0,0)=0, R(n,0)=(n-1)!.

Extensions

More terms from Michel Marcus, Feb 19 2025