cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185828 Half the number of n X 2 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

1, 3, 10, 23, 61, 162, 421, 1103, 2890, 7563, 19801, 51842, 135721, 355323, 930250, 2435423, 6376021, 16692642, 43701901, 114413063, 299537290, 784198803, 2053059121, 5374978562, 14071876561, 36840651123, 96450076810, 252509579303
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2011

Keywords

Comments

Column 2 of A185835.

Examples

			Some solutions for 4 X 2 with a(1,1)=0:
  0 0   0 1   0 0   0 0   0 1   0 0   0 0   0 0   0 0   0 0
  1 1   0 1   0 1   1 1   0 1   1 0   0 1   1 1   1 0   0 1
  0 1   0 0   0 1   0 1   1 0   1 0   1 1   1 1   1 1   0 1
  0 0   1 1   0 0   0 1   1 0   0 0   0 0   0 0   0 0   0 1
The logarithmic g.f. begins:
L(x) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 162*x^6/6 + ..., where
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 63*x^6 + ... + A051286(n)*x^n/n + ... - _Paul D. Hanna_, Mar 19 2011
		

Crossrefs

Cf. A051286 (exp), A180662 (Fi1).

Programs

  • Maple
    a := proc(n): n*add(binomial(2*n-2*k, 2*k)/(n-k), k=0..n-1) end: seq(a(n), n=1..28); # Johannes W. Meijer, Jun 18 2018
  • PARI
    {a(n)=n*sum(k=0, n-1, binomial(2*n-2*k, 2*k)/(n-k))} /* Paul D. Hanna, Mar 19 2011 */
    
  • PARI
    {a(n)=n*polcoeff(-log( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n))/2, n)} /* Paul D. Hanna, Mar 19 2011 */

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
a(n) = n*Sum_{k=0..n-1} C(2n-2k, 2k)/(n-k). - Paul D. Hanna, Mar 19 2011
L.g.f.: Sum_{n>=1} a(n)*x^n/n = -log((1+x+x^2)*(1-3*x+x^2))/2. - Paul D. Hanna, Mar 19 2011
Logarithmic derivative of A051286, which is the Whitney number of level n of the lattice of the ideals of the fence of order 2n. - Paul D. Hanna, Mar 19 2011
Empirical g.f.: x*(1+x+3*x^2-2*x^3)/(1+x+x^2)/(1-3*x+x^2). - Colin Barker, Feb 22 2012
Empirical: a(n) = Sum_{k=0..floor(n/2)} A084534(n, 2*k). - Johannes W. Meijer, Jun 17 2018
Empirical: a(n) = A100886(2n). - Wojciech Florek, Jan 26 2020