cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A185828 Half the number of n X 2 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

1, 3, 10, 23, 61, 162, 421, 1103, 2890, 7563, 19801, 51842, 135721, 355323, 930250, 2435423, 6376021, 16692642, 43701901, 114413063, 299537290, 784198803, 2053059121, 5374978562, 14071876561, 36840651123, 96450076810, 252509579303
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2011

Keywords

Comments

Column 2 of A185835.

Examples

			Some solutions for 4 X 2 with a(1,1)=0:
  0 0   0 1   0 0   0 0   0 1   0 0   0 0   0 0   0 0   0 0
  1 1   0 1   0 1   1 1   0 1   1 0   0 1   1 1   1 0   0 1
  0 1   0 0   0 1   0 1   1 0   1 0   1 1   1 1   1 1   0 1
  0 0   1 1   0 0   0 1   1 0   0 0   0 0   0 0   0 0   0 1
The logarithmic g.f. begins:
L(x) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 162*x^6/6 + ..., where
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 63*x^6 + ... + A051286(n)*x^n/n + ... - _Paul D. Hanna_, Mar 19 2011
		

Crossrefs

Cf. A051286 (exp), A180662 (Fi1).

Programs

  • Maple
    a := proc(n): n*add(binomial(2*n-2*k, 2*k)/(n-k), k=0..n-1) end: seq(a(n), n=1..28); # Johannes W. Meijer, Jun 18 2018
  • PARI
    {a(n)=n*sum(k=0, n-1, binomial(2*n-2*k, 2*k)/(n-k))} /* Paul D. Hanna, Mar 19 2011 */
    
  • PARI
    {a(n)=n*polcoeff(-log( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n))/2, n)} /* Paul D. Hanna, Mar 19 2011 */

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
a(n) = n*Sum_{k=0..n-1} C(2n-2k, 2k)/(n-k). - Paul D. Hanna, Mar 19 2011
L.g.f.: Sum_{n>=1} a(n)*x^n/n = -log((1+x+x^2)*(1-3*x+x^2))/2. - Paul D. Hanna, Mar 19 2011
Logarithmic derivative of A051286, which is the Whitney number of level n of the lattice of the ideals of the fence of order 2n. - Paul D. Hanna, Mar 19 2011
Empirical g.f.: x*(1+x+3*x^2-2*x^3)/(1+x+x^2)/(1-3*x+x^2). - Colin Barker, Feb 22 2012
Empirical: a(n) = Sum_{k=0..floor(n/2)} A084534(n, 2*k). - Johannes W. Meijer, Jun 17 2018
Empirical: a(n) = A100886(2n). - Wojciech Florek, Jan 26 2020

A185829 Half the number of nX3 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

1, 10, 30, 118, 393, 1430, 5004, 17877, 63181, 224324, 794939, 2819380, 9995857, 35445025, 125677385, 445630567, 1580102608, 5602722348, 19866041906, 70440800557, 249768066156, 885624613914, 3140236676877, 11134612682393
Offset: 1

Views

Author

R. H. Hardin Feb 05 2011

Keywords

Comments

Column 3 of A185835

Examples

			Some solutions for 4X3 with a(1,1)=0
..0..1..1....0..0..0....0..0..0....0..0..1....0..1..1....0..0..0....0..0..0
..0..0..0....1..1..0....1..1..1....1..1..1....0..0..0....0..1..1....0..1..0
..1..1..1....0..0..1....0..0..1....1..0..0....1..1..0....0..1..0....0..1..0
..0..0..1....0..1..1....0..0..1....1..1..1....0..0..0....0..0..0....0..1..0
		

Formula

Empirical: a(n)=2*a(n-1)+6*a(n-2)-a(n-3)-3*a(n-4)+4*a(n-5)-4*a(n-6)-32*a(n-7)-9*a(n-8)-4*a(n-9)-19*a(n-10)+17*a(n-11)+3*a(n-12)+a(n-13)-a(n-14)

A185830 Half the number of n X 4 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

2, 23, 118, 514, 2398, 11789, 54223, 257050, 1213538, 5716561, 26960702, 127201987, 599792318, 2828918061, 13342117403, 62924057051, 296766436047, 1399631468891, 6601012746804, 31132105093032, 146827124366034, 692474808791206
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2011

Keywords

Comments

Column 4 of A185835.

Examples

			Some solutions for 6 X 4 with a(1,1)=0:
  0 0 0 0    0 0 1 1    0 0 1 0    0 1 1 1    0 1 1 1
  0 1 1 1    1 0 1 0    1 1 1 0    0 1 0 0    0 1 0 0
  0 1 0 1    1 1 0 0    1 0 0 1    0 1 1 0    1 1 0 1
  0 1 0 1    0 0 1 1    0 1 1 1    1 0 1 0    1 0 0 1
  0 1 0 1    0 1 0 1    0 0 0 0    1 0 1 0    0 1 1 0
  0 0 1 1    0 1 0 1    1 1 1 0    1 1 1 0    0 1 1 0
		

Crossrefs

Cf. A185835.

Programs

  • Maple
    Configs:= remove(t -> min(nops({t[1],t[2],t[3],t[6]}), nops({t[2],t[3],t[4],t[7]}), nops({t[2],t[5],t[6],t[7]}), nops({t[3],t[6],t[7],t[8]}))=1,
    [seq(convert(2^8+i,base,2)[1..8],i=0..2^8-1)]):
    Compatible:= proc(i,j) local k;
    if Configs[i][5..8] <> Configs[j][1..4] or not member(numboccur(Configs[i][5], [Configs[i][1],Configs[i][6],Configs[j][5]]),{1,2})
       or not member(numboccur(Configs[i][6], [Configs[i][2],Configs[i][5],Configs[i][7],Configs[j][6]]),{1,2})
       or not member(numboccur(Configs[i][7], [Configs[i][3],Configs[i][6],Configs[i][8],Configs[j][7]]),{1,2})
       or not member(numboccur(Configs[i][8], [Configs[i][4],Configs[i][7],Configs[j][8]]),{1,2})
      then 0 else 1 fi;
    end proc:
    T:= Matrix(162,162,Compatible):
    u:= Vector(162,proc(i) if member(numboccur(Configs[i][1],[Configs[i][2],Configs[i][5]]),{1,2})
        and member(numboccur(Configs[i][2],[Configs[i][1],Configs[i][3],Configs[i][6]]),{1,2})
        and member(numboccur(Configs[i][3],[Configs[i][2],Configs[i][4],Configs[i][7]]),{1,2})
        and member(numboccur(Configs[i][4],[Configs[i][3],Configs[i][8]]),{1,2}) then 1 else 0 fi end proc) :
    v:= Vector(162,proc(i) if member(numboccur(Configs[i][5],[Configs[i][1],Configs[i][6]]),{1,2})
        and member(numboccur(Configs[i][6],[Configs[i][2],Configs[i][5],Configs[i][7]]),{1,2})
        and member(numboccur(Configs[i][7],[Configs[i][3],Configs[i][6],Configs[i][8]]),{1,2})
        and member(numboccur(Configs[i][8],[Configs[i][4],Configs[i][7]]),{1,2}) then 1 else 0 fi end proc) :
    Tv[0]:= v:
    for n from 1 to 50 do Tv[n]:= T . Tv[n-1] od:
    [2, seq(u^%T . Tv[n]/2,n=0..50)]; # Robert Israel, Aug 15 2018

Formula

Empirical: a(n) = 4*a(n-1) + 9*a(n-2) - 15*a(n-3) - 67*a(n-4) + 2*a(n-5) + 321*a(n-6) - 70*a(n-7) - 672*a(n-8) - 351*a(n-9) + 920*a(n-10) - 5077*a(n-11) + 733*a(n-12) + 28694*a(n-13) + 15849*a(n-14) - 28046*a(n-15) - 56805*a(n-16) + 89957*a(n-17) - 87270*a(n-18) + 85004*a(n-19) - 164885*a(n-20) + 188247*a(n-21) - 111655*a(n-22) + 89028*a(n-23) - 117971*a(n-24) + 115994*a(n-25) - 64896*a(n-26) + 52709*a(n-27) - 50206*a(n-28) + 31595*a(n-29) - 11233*a(n-30) + 1156*a(n-31) + 2585*a(n-32) - 5924*a(n-33) + 2841*a(n-34) - 817*a(n-35) + 361*a(n-36) - 42*a(n-37) - 6*a(n-38).
Empirical formula verified (see link). - Robert Israel, Aug 15 2018

A185831 Half the number of nX5 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

3, 61, 393, 2398, 15782, 98975, 649826, 4143707, 26679121, 171597547, 1102725806, 7092378045, 45590856963, 293158517847, 1884832244162, 12118696565347, 77918494954731, 500981651046567, 3221109348385647, 20710370917938021
Offset: 1

Views

Author

R. H. Hardin Feb 05 2011

Keywords

Comments

Column 5 of A185835

Examples

			Some solutions for 4X5 with a(1,1)=0
..0..0..1..0..0....0..1..1..0..1....0..0..1..1..1....0..1..1..0..0
..1..0..1..0..0....0..0..1..0..1....0..1..1..0..1....0..0..1..0..1
..1..0..1..1..1....1..1..0..0..1....1..0..0..0..1....1..0..0..0..1
..1..0..0..0..1....0..0..0..1..1....1..1..1..1..1....1..1..1..1..1
		

A185832 Half the number of nX6 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

5, 162, 1430, 11789, 98975, 923808, 7678409, 68363184, 593948668, 5187350050, 45205777641, 395015488029, 3443605978936, 30060887575003, 262260968830996, 2288567378102476, 19968587237909055, 174246131512755338
Offset: 1

Views

Author

R. H. Hardin Feb 05 2011

Keywords

Comments

Column 6 of A185835

Examples

			Some solutions for 4X6 with a(1,1)=0
..0..1..1..1..1..1....0..0..1..1..1..0....0..0..0..1..1..0....0..0..0..1..1..1
..0..0..0..0..0..1....0..1..0..0..1..0....0..1..1..1..0..0....0..1..1..0..0..0
..1..1..1..1..1..1....0..1..0..0..1..0....0..1..0..0..1..1....1..0..1..0..1..0
..0..0..0..0..0..0....0..0..1..1..0..0....0..1..1..0..0..1....1..0..1..0..1..0
		

A185833 Half the number of nX7 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

8, 421, 5004, 54223, 649826, 7678409, 91052720, 1073661088, 12644950311, 149729950026, 1765937206744, 20858521172073, 246298874943372, 2908556504972388, 34344854423802299, 405576876056939440
Offset: 1

Views

Author

R. H. Hardin Feb 05 2011

Keywords

Comments

Column 7 of A185835

Examples

			Some solutions for 4X7 with a(1,1)=0
..0..1..1..1..0..0..0....0..1..1..0..1..0..0....0..1..0..0..0..1..0
..0..0..0..0..1..1..1....0..1..0..0..1..1..0....0..1..1..1..0..1..0
..1..1..1..0..1..0..1....1..0..0..1..0..1..0....1..0..0..0..0..1..0
..0..0..1..0..1..0..1....1..1..1..1..0..1..1....1..0..1..1..1..0..0
		

A185834 Half the number of nX8 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

13, 1103, 17877, 257050, 4143707, 68363184, 1073661088, 17200095426, 278159538826, 4418356392225, 71020967453692, 1136704302337236, 18204389915482609, 291581361291318489, 4670236803825684178
Offset: 1

Views

Author

R. H. Hardin Feb 05 2011

Keywords

Comments

Column 8 of A185835

Examples

			Some solutions for 4X8 with a(1,1)=0
..0..0..0..1..1..0..0..0....0..0..0..0..0..0..1..1....0..1..1..0..1..0..1..1
..0..1..1..0..0..1..1..1....0..1..1..1..1..1..0..0....0..1..0..0..1..0..0..1
..0..0..0..1..0..1..0..0....0..1..0..0..0..0..1..1....0..1..1..1..0..1..1..1
..1..1..1..1..0..0..1..1....0..0..1..1..1..0..0..1....0..0..0..0..0..1..0..0
		

A185827 Half the number of n X n binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

0, 3, 30, 514, 15782, 923808, 91052720, 17200095426, 5976334149476, 3829861209246738
Offset: 1

Views

Author

R. H. Hardin Feb 05 2011

Keywords

Comments

Diagonal of A185835

Examples

			Some solutions for 4X4 with a(1,1)=0
..0..0..1..1....0..0..1..1....0..0..0..1....0..1..1..1....0..0..1..1
..1..1..0..1....0..1..0..1....1..1..0..1....0..1..0..0....0..1..0..0
..0..0..0..1....0..1..0..1....0..1..0..1....0..1..1..0....1..1..0..1
..0..1..1..1....0..1..0..0....0..0..1..1....0..0..1..0....0..0..1..1
		
Showing 1-8 of 8 results.