A185904 Multiplication table for the tetrahedral numbers (A000292), by antidiagonals.
1, 4, 4, 10, 16, 10, 20, 40, 40, 20, 35, 80, 100, 80, 35, 56, 140, 200, 200, 140, 56, 84, 224, 350, 400, 350, 224, 84, 120, 336, 560, 700, 700, 560, 336, 120, 165, 480, 840, 1120, 1225, 1120, 840, 480, 165, 220, 660, 1200, 1680, 1960, 1960, 1680, 1200, 660, 220, 286, 880, 1650, 2400, 2940, 3136, 2940, 2400, 1650, 880, 286, 364, 1144, 2200, 3300, 4200, 4704, 4704, 4200, 3300, 2200, 1144, 364, 455, 1456, 2860, 4400, 5775, 6720, 7056, 6720, 5775, 4400, 2860, 1456, 455, 560, 1820, 3640, 5720, 7700, 9240, 10080, 10080, 9240, 7700, 5720, 3640, 1820, 560
Offset: 1
Examples
Northwest corner: 1, 4, 10, 20, 35 4, 16, 40, 80, 140 10, 40, 100, 200, 350 20, 80, 200, 400, 700
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
(* This program generates A098358 and its accumulation array, A185904. *) TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A098358 *) Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *) FullSimplify[s[n,k]] (* formula for A185904 *) TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185904 *) Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten T[n_, k_] := Binomial[k + 2, 3]*Binomial[n + 2, 3]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)
Formula
T(n,k) = binomial(k+2,3)*binomial(n+2,3), k >= 1, n >= 1.
Comments