cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185904 Multiplication table for the tetrahedral numbers (A000292), by antidiagonals.

Original entry on oeis.org

1, 4, 4, 10, 16, 10, 20, 40, 40, 20, 35, 80, 100, 80, 35, 56, 140, 200, 200, 140, 56, 84, 224, 350, 400, 350, 224, 84, 120, 336, 560, 700, 700, 560, 336, 120, 165, 480, 840, 1120, 1225, 1120, 840, 480, 165, 220, 660, 1200, 1680, 1960, 1960, 1680, 1200, 660, 220, 286, 880, 1650, 2400, 2940, 3136, 2940, 2400, 1650, 880, 286, 364, 1144, 2200, 3300, 4200, 4704, 4704, 4200, 3300, 2200, 1144, 364, 455, 1456, 2860, 4400, 5775, 6720, 7056, 6720, 5775, 4400, 2860, 1456, 455, 560, 1820, 3640, 5720, 7700, 9240, 10080, 10080, 9240, 7700, 5720, 3640, 1820, 560
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2011

Keywords

Comments

A member of the accumulation chain ... < A185906 < A000007 < A003991 < A098358 < A185904 < A185905 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
   1,  4,  10,  20,  35
   4, 16,  40,  80, 140
  10, 40, 100, 200, 350
  20, 80, 200, 400, 700
		

Crossrefs

Row 1 = Column 1 = A000292.

Programs

  • Mathematica
    (* This program generates A098358 and its accumulation array, A185904. *)
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A098358 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]  (* formula for A185904 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185904 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    T[n_, k_] := Binomial[k + 2, 3]*Binomial[n + 2, 3]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)

Formula

T(n,k) = binomial(k+2,3)*binomial(n+2,3), k >= 1, n >= 1.