cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185943 Riordan array ((1/(1-x))^m, x*A000108(x)), m = 2.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 7, 4, 1, 5, 16, 12, 5, 1, 6, 39, 34, 18, 6, 1, 7, 104, 98, 59, 25, 7, 1, 8, 301, 294, 190, 92, 33, 8, 1, 9, 927, 919, 618, 324, 134, 42, 9, 1, 10, 2983, 2974, 2047, 1128, 510, 186, 52, 10, 1, 11, 9901, 9891, 6908, 3934, 1887, 759, 249, 63, 11, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 07 2011

Keywords

Examples

			Array begins
  1;
  2,   1;
  3,   3,   1;
  4,   7,   4,   1;
  5,  16,  12,   5,   1;
  6,  39,  34,  18,   6,   1;
  7, 104,  98,  59,  25,   7,   1;
  8, 301, 294, 190,  92,  33,   8,   1;
Production matrix begins:
   2, 1;
  -1, 1, 1;
   1, 1, 1, 1;
   0, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1;
   ... _Philippe Deléham_, Sep 20 2014
		

Crossrefs

Cf. A091491 (m=1), A185944 (m=3), A185945 (m=4).
Row sums A014140. Cf. A000108, A014143.

Programs

  • Mathematica
    r[n_, k_, m_] := k*Sum[ Binomial[i + m - 1, m - 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; r[n_, 0, 2] := n + 1; Table[r[n, k, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 13 2012, from formula *)
  • Sage
    @CachedFunction
    def A(n, k):
        if n==k: return n+1
        return add(A(n-1, j) for j in (0..k))
    A185943 = lambda n,k: A(n, n-k)
    for n in (0..7) :
         print([A185943(n, k) for k in (0..n)])  # Peter Luschny, Nov 14 2012

Formula

R(n,k,m) = k*Sum_{i=0..n-k} binomial(i+m-1, m-1)*binomial(2*(n-i)-k-1, n-i-1)/(n-i), m = 2, k > 0.
R(n,0,2) = n + 1.
Conjecture: R(n,1,2) = A014140(n-1). R(n,2,2) = A014143(n-2). - R. J. Mathar, Feb 11 2011