cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185951 Exponential Riordan array (1, x*cosh(x)).

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 0, 12, 0, 1, 5, 0, 30, 0, 1, 0, 120, 0, 60, 0, 1, 7, 0, 735, 0, 105, 0, 1, 0, 896, 0, 2800, 0, 168, 0, 1, 9, 0, 15372, 0, 8190, 0, 252, 0, 1, 0, 5760, 0, 114240, 0, 20160, 0, 360, 0, 1, 11, 0, 270765, 0, 556710, 0, 43890, 0, 495, 0, 1, 0, 33792, 0, 4118400, 0, 2084544, 0, 87120, 0, 660, 0, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Feb 11 2011

Keywords

Comments

The column k=0 of the array (which contains T(0,0)=1 and otherwise zero) is not included in the triangle.
Also the Bell transform of the sequence "a(n) = n+1 if n is even else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Array begins
   1,
   0,   1,
   3,   0,    1,
   0,  12,    0,    1,
   5,   0,   30,    0,    1,
   0,  120,   0,   60,    0,    1,
   7,   0,   735,   0,   105,   0,    1,
   0,  896,   0,  2800,   0,   168,   0,   1,
   9,   0,  15372,  0,  8190,   0,   252,  0,   1,
   0, 5760,   0, 114240,  0,  20160,  0,  360,  0,  1,
  11,   0, 270765,  0, 556710,  0,  43890, 0,  495, 0,  1,
   0, 33792,  0, 4118400, 0, 2084544, 0, 87120, 0, 660, 0, 1.
		

Crossrefs

Cf. A264428.

Programs

  • Maple
    A185951 := proc(n,k)
       if n =k then
          1;
       else
          binomial(n,k)/2^k * add( binomial(k,i)*(k-2*i)^(n-k),i=0..k) ;
       end if;
    end proc: # R. J. Mathar, Feb 22 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n::even,n+1,0), 10); # Peter Luschny, Jan 29 2016
  • Mathematica
    t[n_, k_] := Binomial[n, k]/(2^k)* Sum[ Binomial[k, i]*(k-2*i)^(n-k), {i, 0, k}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 14 2013, from formula *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, If[EvenQ[n], n + 1, 0]], rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • PARI
    T(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    row(n) = vector(n, k, T(n,k)); \\ Michel Marcus, Feb 25 2025

Formula

T(n,k) = binomial(n,k)/(2^k) * Sum_{i=0..k} binomial(k,i) *(k-2*i)^(n-k), n > k; T(n,n) = 1.