cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A217285 Irregular triangle read by rows: T(n,k) is the number of labeled relations on n nodes with exactly k edges; n>=0, 0<=k<=n^2.

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 4, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 1, 25, 300, 2300, 12650, 53130, 177100, 480700, 1081575, 2042975, 3268760, 4457400, 5200300, 5200300, 4457400, 3268760, 2042975, 1081575, 480700, 177100, 53130, 12650, 2300, 300, 25, 1
Offset: 0

Views

Author

Geoffrey Critzer, Sep 30 2012

Keywords

Comments

A labeled relation on 6 nodes will be connected with probability > 99%. It will have at least 10 and no more than 26 edges with probability > 99%.
A random labeled relation can be generated in Mathematica:
GraphPlot[g=Table[RandomInteger[],{6},{6}], DirectedEdges->True, VertexLabeling->True, SelfLoopStyle->True, MultiedgeStyle->True]
Sum {k=0...n^2} T(n,k)*k = A185968. - Geoffrey Critzer, Oct 07 2012

Examples

			G.f.: A(x,y) = 1 + x*(1+y) + x^2*(1+y)^4 + x^3*(1+y)^9 + x^4*(1+y)^16 +...
Triangle T(n,k) begins:
1;
1,  1;
1,  4,  6,    4,    1;
1,  9,  36,  84,  126,  126,   84,    36,     9,     1;
1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, ...
		

Crossrefs

Column k=1 gives: A000290.
Row lengths are: A002522.
Antidiagonal sums: A121689.

Programs

  • Mathematica
    Table[Table[Binomial[n^2,k], {k,0,n^2}], {n,0,6}] //Grid
  • PARI
    {T(n,k)=polcoeff((1+x+x*O(x^k))^(n^2),k)}
    for(n=0,6,for(k=0,n^2,print1(T(n,k),", "));print("")) \\ Paul D. Hanna, Aug 22 2013
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(sum(m=0, n, x^m*(1+y)^m*prod(k=1, m, (1-x*(1+y)^(4*k-3))/(1-x*(1+y)^(4*k-1) +x*O(x^n)))), n,x),k,y)}
    {for(n=0,6,for(k=0,n^2,print1(T(n,k),", "));print(""))} \\ Paul D. Hanna, Aug 22 2013

Formula

T(n,k) = binomial(n^2,k).
E.g.f.: Sum{n>=0}(1+y)^(n^2)*x^n/n!. - Geoffrey Critzer, Oct 07 2012
G.f.: A(x,y) = Sum_{n>=0} x^n*(1+y)^n*Product_{k=1..n} (1-x*(1+y)^(4*k-3))/(1-x*(1+y)^(4*k-1)) due to a q-series identity. - Paul D. Hanna, Aug 22 2013
G.f.: A(x,y) = 1/(1- q*x/(1- (q^3-q)*x/(1- q^5*x/(1- (q^7-q^3)*x/(1- q^9*x/(1- (q^11-q^5)*x/(1- q^13*x/(1- (q^15-q^7)*x/(1- ...))))))))), a continued fraction where q = (1+y), due to an identity of a partial elliptic theta function. - Paul D. Hanna, Aug 22 2013
Showing 1-1 of 1 results.