cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A185994 A generalized q-Catalan number for q=2.

Original entry on oeis.org

1, 2, 6, 26, 150, 1114, 10614, 131002, 2128278, 46294426, 1368718518, 55647242106, 3137452915158, 246751601425242, 27181289502625014, 4205716133932054842, 915890632125187606038, 281117681559174501597466, 121733516122198763782243638
Offset: 0

Views

Author

Paul Barry, Feb 08 2011

Keywords

Comments

Hankel transform is A185995.

Programs

  • Maple
    A185994 := proc(n)
        option remember ;
        if n = 0 then
            1;
        else
            2*procname(n-1)+add(2^k*procname(k)*procname(n-1-k),k=0..n-2) ;
        end if;
    end proc:
    seq(A185994(n),n=0..30) ; # R. J. Mathar, Feb 03 2025

Formula

G.f.: 1/(1-2x/(1-x/(1-4x/(1-2x/(1-8x/(1-4x/(1-16x/(1-8x/(1-... (continued fraction).
G.f.: 1/(1-2x-2x^2/(1-5x-8x^2/(1-10x-32x^2/(1-(2^2+2^4)x-2^7x^2/(1-(2^3+2^5)x-2^9x^2/(1-.... (continued fraction).
a(n)=if(n=0,1,2*a(n-1)+sum{k=0..n-2, 2^k*a(k)*a(n-1-k)}).

A260638 Irregular table: list of symmetric n X n matrices made from 2-binomial coefficients, read by rows, where the k-th row of any n X n matrix is filled with binomial coefficients [k-1,k-1]..[k+n-2,k-1] (for q=2).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 7, 1, 7, 35, 1, 1, 1, 1, 1, 3, 7, 15, 1, 7, 35, 155, 1, 15, 155, 1395, 1, 1, 1, 1, 1, 1, 3, 7, 15, 31, 1, 7, 35, 155, 651, 1, 15, 155, 1395, 11811, 1, 31, 651, 11811, 200787, 1, 1, 1, 1, 1, 1, 1, 3, 7, 15, 31, 63, 1, 7, 35, 155
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 11 2015

Keywords

Comments

The determinant of the n X n matrix is 2^((n/6)*(2*n^2 - 3*n + 1)), that is, A185995(n-1).
The permanent is in A260639.

Examples

			The irregular table starts:
1;
1, 1;
1, 3;
1, 1, 1;
1, 3, 7;
1, 7, 35;
		

Crossrefs

Programs

  • Mathematica
    Flatten@Flatten@Table[Table[QBinomial[r + c, r, 2], {r, 0, n}, {c, 0, n}], {n, 0, 5}]

A335010 a(n) = Product_{k=1..n} (2^k - 1)^k.

Original entry on oeis.org

1, 9, 3087, 156279375, 4474145825060625, 279739266376566114746420625, 149066302192479440045478394157489352699375, 2665022756273454714861436593121414601862237540654765380859375
Offset: 1

Views

Author

Vaclav Kotesovec, May 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[(2^k - 1)^k, {k, 1, n}], {n, 1, 10}]
  • PARI
    a(n) = prod(k=1, n, (2^k-1)^k); \\ Michel Marcus, May 19 2020

Formula

a(n) ~ c * 2^(n*(n+1)*(2*n+1)/6), where c = A335011 = Product_{k>=1} (1 - 1/2^k)^k.
Showing 1-3 of 3 results.