A186169 Consider two consecutive primes {p,q} such that {P=2p-q,Q=2q-p} are both prime. Sequence gives lesser primes p.
47, 257, 607, 619, 647, 1097, 1459, 1499, 1709, 1747, 1889, 2677, 2861, 3307, 3559, 4007, 5107, 5387, 5419, 6317, 6367, 7309, 7829, 9467, 10079, 10639, 11789, 12589, 12647, 12721, 13457, 14747, 15149, 15749, 15797, 15889, 15907, 17477, 17839, 18217, 19477
Offset: 1
Keywords
Examples
a(1)=47 because p=47, q=53 and {P=41,Q=59} are both prime.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A181848.
Programs
-
Mathematica
a = 2; Reap[ Do[b = Prime[n]; If[PrimeQ[2*a - b] && PrimeQ[2*b - a], Sow[a]]; a = b, {n, 2, 1000}]][[2, 1]] Transpose[Select[Partition[Prime[Range[2500]],2,1],AllTrue[{2#[[1]]- #[[2]], 2#[[2]]-#[[1]]},PrimeQ]&]][[1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 14 2015 *)
Comments