A186186 Expansion of 1/(1-x/(1-x)*A(x/(1-x))) where A(x) is the g.f. of A002293.
1, 1, 3, 12, 63, 403, 2919, 22833, 187799, 1599718, 13984383, 124717327, 1130144932, 10375309228, 96290993853, 901915801437, 8514822062757, 80939662475426, 774025387921462, 7441380898249458, 71879194326339456, 697253570563306939, 6789448668631285664, 66340474776507262638
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Crossrefs
Cf. A002293.
Programs
-
PARI
a(n)={if(n<1, n==0, sum(m=1, n, sum(k=m, n, binomial(n-1,k-1)*m/(3*k-2*m)*binomial(4*k-3*m-1,k-m))))} \\ Andrew Howroyd, Apr 17 2021
Formula
a(n) = Sum_{m=1..n} Sum_{k=m..n} binomial(n-1,k-1)*m/(3*k-2*m)*binomial(4*k-3*m-1,k-m), n>0, a(0)=1.
Extensions
Terms a(18) and beyond from Andrew Howroyd, Apr 17 2021