A186201 Consider all ways of writing 2n = p + q where p, q are primes, p <= n and q >= n; let s1(n) = sum of the p's and s2(n) = sum of the q's; the sequence lists the integers 2n for which s1(n) divides s2(n).
4, 6, 16, 18, 20, 32, 52, 72, 102, 180, 3212
Offset: 1
Examples
For 2n=52, the partitions are (5,47), (11,41) and (23,29). The lesser sum of primes is 5+11+23=39 and the greater sum of primes is 29+41+47=117, with 39|117 for quotient 3. For the 2n listed, the values of (s1(n), s2(n)/s1(n)) are (2,1), (3,1), (8,3), (12,2), (10,3), (16,3), (39,3), (108,3), (204,3), (630,3), (35332,3).
Programs
-
Mathematica
okQ[n_] := Module[{p, q}, p = Select[Prime[Range[PrimePi[n]]], PrimeQ[2 n - #] &]; q = 2 n - p; Mod[Plus @@ q, Plus @@ p] == 0]; 2*Select[Range[2, 10000], okQ]
-
PARI
isok(n) = if (!(n%2), my(s1=0, s2=0); forprime(p=1, n/2, if (isprime(n-p), s1 += p; s2 += n-p)); s1 && !(s2 % s1)); for (n=1, 10000, if (isok(2*n), print1(2*n, ", "))) \\ Michel Marcus, Mar 13 2023
Comments