cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186230 Triangle T(n,k), n>=1, 1<=k<=n, read by rows: T(n,k) is the number of positive integers j

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 2, 4, 2, 0, 0, 0, 1, 0, 2, 0, 3, 0, 0, 1, 0, 1, 3, 0, 4, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 4, 0, 5, 0
Offset: 1

Views

Author

Alois P. Heinz, Feb 15 2011

Keywords

Comments

T(n,k) = A000010(k) if n is prime and 1

Examples

			T(n,1) = 0 because no positive integer j<1 can be found.
T(n,k) = 0 if GCD(n,k)>1.
T(7,5) = 4 because for j in {1,2,3,4} all conditions are satisfied.
Triangle T(n,k) begins:
  0;
  0, 0;
  0, 1, 0;
  0, 0, 1, 0;
  0, 1, 2, 2, 0;
  0, 0, 0, 0, 1, 0;
  0, 1, 2, 2, 4, 2, 0;
		

Crossrefs

Row sums give: A185953. Column k=2 gives: A000035 for n>1. Lower diagonal gives: A057475(n-1) for n>2. Cf. A000010, A000040, A003989.

Programs

  • Maple
    with(numtheory):
    T:= proc(n,k) local c, i, j, m;
          if k=1 or igcd(n, k)>1 then 0
        elif isprime(n) then phi(k)
        else m:= n*k;
             i:= igcd(m, 2);
             c:= 0;
             for j to k-1 by i do
               if igcd(m, j)=1 then c:= c+1 fi
             od; c
          fi
        end:
    seq(seq(T(n, k), k=1..n), n=1..20);
  • Mathematica
    t[n_, k_] := Module[{c, i, j, m}, If[ k == 1 || GCD[n, k] > 1, 0, If[PrimeQ[n], EulerPhi[k], m = n*k; i = GCD[m, 2]; c = 0; For[j = 1, j <= k-1, j = j+i, If[GCD[m, j] == 1, c = c+1]]; c]]]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)

Formula

T(n,k) = |{ j : 1 <= j < k and GCD(n,k) = GCD(n,j) = GCD(k,j) = 1 }|.