cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186235 Total Wiener index of double-star trees with n nodes.

Original entry on oeis.org

10, 18, 57, 82, 169, 220, 374, 460, 700, 830, 1175, 1358, 1827, 2072, 2684, 3000, 3774, 4170, 5125, 5610, 6765, 7348, 8722, 9412, 11024, 11830, 13699, 14630, 16775, 17840, 20280, 21488, 24242, 25602, 28689, 30210, 33649, 35340, 39150, 41020
Offset: 4

Views

Author

Washington Bomfim, Feb 15 2011

Keywords

Comments

For the trees of a given order, it appears that the Wiener indexes are very close. For n=8, the indexes are 54, 57, and 58.
The second Bomfim link refers to formulas of the total Wiener index, and the average Wiener index of those trees.

Examples

			The first Bomfim link shows a way to find a(8).
		

Crossrefs

Programs

  • Magma
    [ IsEven(n) select (n-2)*(2*n-3)*(7*n-4)/24 else (n-3)*(n-1)*(7*n-8)/12: n in [4..43] ]; // Bruno Berselli, Feb 17 2011
  • Mathematica
    a[n_]:= a[n] = -a[n-7] + a[n-6] + 3a[n-5] - 3a[n-4] - 3a[n-3] + 3a[n-2] + a[n-1]; a[0]=-1; a[1]=0; a[2]=0; a[3]=0; a[4]=10; a[5]=18; a[6]=57; a /@ Range[4, 43] (* Jean-François Alcover, Jun 01 2011, after recurrence signature *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{10,18,57,82,169,220,374},40] (* Harvey P. Dale, Mar 25 2013 *)
  • PARI
    for(n=4,43,if(n%2,print1((1/12)*(7*n^3+53*n)-3*n^2-2,", "), print1((1/24)*(14*n^3-57*n^2+70*n)-1,", ")))
    

Formula

G.f.: x^4*(10+8*x+9*x^2+x^3)/((1+x)^3*(1-x)^4). Also a(n)=(n*(28*n^2-129*n+176)+3*(5*n^2-12*n+8)*(-1)^n-72)/48. - Bruno Berselli, Feb 15 2011
For even n, a(n)=(14*n^3-57*n^2+70*n)/24-1, otherwise a(n)=(7*n^3+53*n)/12-3*n^2-2.
With d=floor((n-2)/2), a(n)=d((n-2)*(n-1)+n*(d+3)/2-d^2/3-3*d/2-13/6).