cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186236 G.f.: exp( Sum_{n>=0} [ Sum_{k=0..2*n} A027907(n,k)^2 * x^k ]* x^n/n ), where A027907 is the triangle of trinomial coefficients.

Original entry on oeis.org

1, 1, 2, 5, 13, 34, 93, 262, 753, 2198, 6502, 19449, 58724, 178739, 547836, 1689407, 5237939, 16318137, 51056027, 160363129, 505456920, 1598263936, 5068483189, 16116397411, 51371962474, 164123564499, 525447953073, 1685534207788, 5416719384326, 17437073203711
Offset: 0

Views

Author

Paul D. Hanna, Oct 19 2011

Keywords

Comments

Trinomial coefficients satisfy: Sum_{k=0..2*n} A027907(n,k)*x^k = (1+x+x^2)^n.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 34*x^5 + 93*x^6 +...
The logarithm begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 91*x^5/5 + 282*x^6/6 + 890*x^7/7 + 2831*x^8/8 + 9055*x^9/9 + 29133*x^10/10 +...
which equals the sum of the series:
log(A(x)) = (1 + x + x^2)*x
+ (1 + 2^2*x + 3^2*x^2 + 2^2*x^3 + x^4)*x^2/2
+ (1 + 3^2*x + 6^2*x^2 + 7^2*x^3 + 6^2*x^4 + 3*x^5 + x^6)*x^3/3
+ (1 + 4^2*x + 10^2*x^2 + 16^2*x^3 + 19^2*x^4 + 16^2*x^5 + 10^2*x^6 + 4^2*x^7 + x^8)*x^4/4
+ (1 + 5^2*x + 15^2*x^2 + 30^2*x^3 + 45^2*x^4 + 51^2*x^5 + 45^2*x^6 + 30^2*x^7 + 15^2*x^8 + 5^2*x^9 + x^10)*x^5/5 +...
		

Crossrefs

Cf. A180718 (variant).

Programs

  • PARI
    {A027907(n,k)=polcoeff((1+x+x^2)^n, k)}
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, 2*m, A027907(m,k)^2 *x^k) *x^m/m)+x*O(x^n)), n)}