A197601
G.f.: exp( Sum_{n>=1} [Sum_{k=0..2*n} C(2*n,k)^2 *x^k] *x^n/n ).
Original entry on oeis.org
1, 1, 5, 14, 52, 187, 708, 2734, 10758, 43004, 174004, 711660, 2936564, 12211688, 51124185, 215299685, 911445413, 3876523626, 16556573129, 70980163570, 305343924258, 1317634326631, 5702146948069, 24741071869651, 107608326588838, 469073933764287
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 14*x^3 + 52*x^4 + 187*x^5 + 708*x^6 +...
The logarithm of the g.f. begins:
log(A(x)) = x + 9*x^2/2 + 28*x^3/3 + 121*x^4/4 + 496*x^5/5 + 2100*x^6/6 + 9017*x^7/7 + 38969*x^8/8 +...+ A198059(n)*x^n/n +...
and equals the sum of the series:
log(A(x)) = (1 + 2^2*x + x^2)*x
+ (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^2/2
+ (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^3/3
+ (1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)*x^4/4
+ (1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)*x^5/5 +...
which involves the squares of the coefficients in even powers of (1+x).
The logarithm of the g.f. can also be expressed as:
log(A(x)) = (1-x)^5*(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 +...)*x
+ (1-x)^9*(1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 +...)*x^2/2
+ (1-x)^13*(1 + 7^2*x + 28^2*x^2 + 84^2*x^3 + 210^2*x^4 +...)*x^3/3
+ (1-x)^17*(1 + 9^2*x + 45^2*x^2 + 165^2*x^3 + 495^2*x^4 +...)*x^4/4
+ (1-x)^21*(1 + 11^2*x + 66^2*x^2 + 286^2*x^3 + 1001^2*x^4 +...)*x^5/5 +...
which involves the squares of the coefficients in odd powers of 1/(1-x).
-
nmax = 30; CoefficientList[Series[Exp[Sum[Hypergeometric2F1[-2*k, -2*k, 1, x]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 29 2022 *)
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(2*m,k)^2 *x^k) *x^m/m)+x*O(x^n)), n)}
-
{a(n)=polcoeff(exp(sum(m=1, n, (1-x+x*O(x^n))^(4*m+1) *sum(k=0, n-m+1, binomial(2*m+k, k)^2 *x^k+x*O(x^n)) *x^m/m)+x*O(x^n)), n)}
A199248
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} A027907(n,k)^2 * x^k * A(x)^k]* x^n/n ), where A027907 is the triangle of trinomial coefficients.
Original entry on oeis.org
1, 1, 2, 6, 20, 69, 248, 923, 3523, 13706, 54152, 216710, 876607, 3578405, 14722432, 60986158, 254145337, 1064712328, 4481577078, 18943753140, 80381689202, 342254333393, 1461864544896, 6262021627055, 26894816382199, 115792035533779, 499648608539714, 2160504474956390
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 69*x^5 + 248*x^6 + 923*x^7 +...
such that A(x) = G(x*A(x)) where G(x) is given by:
G(x) = (1 - x + x^2)*(1 - x^2 + x^4)/(1-x)^2 = (1-x^5)/(1-x) + x^3/(1-x)^2:
G(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 7*x^9 +...
...
Let A = x*A(x), then the logarithm of the g.f. A(x) equals the series:
log(A(x)) = (1 + A + A^2)*x +
(1 + 2^2*A + 3^2*A^2 + 2^2*A^3 + A^4)*x^2/2 +
(1 + 3^2*A + 6^2*A^2 + 7^2*A^3 + 6^2*A^4 + 3^2*A^5 + A^6)*x^3/3 +
(1 + 4^2*A + 10^2*A^2 + 16^2*A^3 + 19^2*A^4 + 16^2*A^5 + 10^2*A^6 + 4^2*A^7 + A^8)*x^4/4 +
(1 + 5^2*A + 15^2*A^2 + 30^2*A^3 + 45^2*A^4 + 51^2*A^5 + 45^2*A^6 + 30^2*A^7 + 15^2*A^8 + 5^2*A^9 + A^10)*x^5/5 +...
which involves the squares of the trinomial coefficients A027907(n,k).
-
{a(n)=local(A=1+x); A=1/x*serreverse(x*(1-x)*(1-x^3)*(1-x^4)/(1-x^12+x*O(x^n))); polcoeff(A, n)}
-
/* G.f. A(x) using the squares of the trinomial coefficients */
{A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k*A^k) *x^m/m)+x*O(x^n)));polcoeff(A, n)}
A200475
G.f. satisfies: A(x) = exp( Sum_{n>=1} (Sum_{k=0..2*n} A027907(n,k)^2 * x^k * A(x)^(2*k)) * x^n*A(x)^n/n ), where A027907 is the triangle of trinomial coefficients.
Original entry on oeis.org
1, 1, 3, 13, 65, 350, 1981, 11627, 70132, 432090, 2707595, 17202779, 110563543, 717547090, 4695774335, 30952628861, 205318395288, 1369539030021, 9180527051187, 61813112864984, 417850301293691, 2834802846097200, 19294989810689802, 131723105933867817, 901709774424393614
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 65*x^4 + 350*x^5 + 1981*x^6 +...
Let A = g.f. A(x), then the logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A^2 + x^2*A^4)*x*A +
(1 + 2^2*x*A^2 + 3^2*x^2*A^4 + 2^2*x^3*A^6 + x^4*A^8)*x^2*A^2/2 +
(1 + 3^2*x*A^2 + 6^2*x^2*A^4 + 7^2*x^3*A^6 + 6^2*x^4*A^8 + 3^2*x^5*A^10 + x^6*A^12)*x^3*A^3/3 +
(1 + 4^2*x*A^2 + 10^2*x^2*A^4 + 16^2*x^3*A^6 + 19^2*x^4*A^8 + 16^2*x^5*A^10 + 10^2*x^6*A^12 + 4^2*x^7*A^14 + x^8*A^16)*x^4*A^4/4 +
(1 + 5^2*x*A^2 + 15^2*x^2*A^4 + 30^2*x^3*A^6 + 45^2*x^4*A^8 + 51^2*x^5*A^10 + 45^2*x^6*A^12 + 30^2*x^7*A^14 + 15^2*x^8*A^16 + 5^2*x^9*A^18 + x^10*A^20)*x^5*A^5/5 +...
which involves the squares of the trinomial coefficients A027907(n,k).
-
{a(n)=local(A=1+x);for(i=1,n,A=(1-x*A^2+x^3*A^6-x^5*A^10+x^6*A^12)/(1-x*A^2+x*O(x^n))^2);polcoeff(A,n)}
-
/* G.f. A(x) using the squares of the trinomial coefficients */
{A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k*(A+x*O(x^n))^(2*k))*x^m*A^m/m))); polcoeff(A, n)}
A197743
The number of connected components in all labeled directed graphs (with self loops allowed) on n nodes.
Original entry on oeis.org
0, 2, 20, 600, 70048, 34265920, 69135737856, 563921434969088, 18455775305195147264, 2418183926567027902291968, 1267698967252460350153517105152, 2658483881480146168943131337243754496, 22300809002478630462447974400280680553512960
Offset: 0
-
a=Sum[2^(n^2)x^n/n!, {n,0,20}]; Range[0,20]! CoefficientList[Series[a Log[a], {x,0,20}], x]
-
seq(n)={my(g=log(sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n))); Vec(serlaplace(g*exp(g)), -(n+1))} \\ Andrew Howroyd, Nov 07 2019
A200377
G.f.: A(x) = exp( Sum_{n>=1} (Sum_{k=0..2*n} A027907(n,k)^2 * x^k / A(x)^k) * x^n/n ).
Original entry on oeis.org
1, 1, 2, 4, 7, 11, 19, 34, 61, 106, 181, 311, 543, 955, 1668, 2885, 4980, 8650, 15114, 26391, 45845, 79385, 137718, 239866, 418338, 727926, 1263097, 2191463, 3810775, 6638258, 11556361, 20078960, 34855400, 60567092, 105405431, 183483906, 319039355, 554158992, 962743619, 1674359119, 2913758685, 5068194691
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 11*x^5 + 19*x^6 + 34*x^7 +...
Let A = g.f. A(x), then the logarithm of the g.f. equals the series:
log(A(x)) = (1 + x/A + x^2/A^2)*x +
(1 + 2^2*x/A + 3^2*x^2/A^2 + 2^2*x^3/A^3 + x^4/A^4)*x^2/2 +
(1 + 3^2*x/A + 6^2*x^2/A^2 + 7^2*x^3/A^3 + 6^2*x^4/A^4 + 3^2*x^5/A^5 + x^6/A^6)*x^3/3 +
(1 + 4^2*x/A + 10^2*x^2/A^2 + 16^2*x^3/A^3 + 19^2*x^4/A^4 + 16^2*x^5/A^5 + 10^2*x^6/A^6 + 4^2*x^7/A^7 + x^8/A^8)*x^4/4 +
(1 + 5^2*x/A + 15^2*x^2/A^2 + 30^2*x^3/A^3 + 45^2*x^4/A^4 + 51^2*x^5/A^5 + 45^2*x^6/A^6 + 30^2*x^7/A^7 + 15^2*x^8/A^8 + 5^2*x^9/A^9 + x^10/A^10)*x^5/5 +...
which involves the squares of the trinomial coefficients A027907(n,k).
-
/* G.f. A(x) using the squares of the trinomial coefficients */
{A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k/(A+x*O(x^n))^k) *x^m/m))); polcoeff(A, n)}
A198203
G.f.: exp( Sum_{n>=0} [ Sum_{k=0..2*n} A027907(n,k)^n * x^k ]* x^n/n ), where A027907 is the triangle of trinomial coefficients.
Original entry on oeis.org
1, 1, 2, 5, 19, 160, 3418, 179705, 19488053, 4590422901, 2738580784946, 3583015072969210, 9255051219746866753, 56916338252385095986978, 871826913772059843867743765, 26753845554560439025697319191184, 1695956186616651065722319776300825712
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 19*x^4 + 160*x^5 + 3418*x^6 +...
The logarithm begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 55*x^4/4 + 691*x^5/5 + 19440*x^6/6 + 1232750*x^7/7 + 154436735*x^8/8 + 41136723397*x^9/9 +...
which equals the sum of the series:
log(A(x)) = (1 + x + x^2)*x
+ (1 + 2^2*x + 3^2*x^2 + 2^2*x^3 + x^4)*x^2/2
+ (1 + 3^3*x + 6^3*x^2 + 7^3*x^3 + 6^3*x^4 + 3^3*x^5 + x^6)*x^3/3
+ (1 + 4^4*x + 10^4*x^2 + 16^4*x^3 + 19^4*x^4 + 16^4*x^5 + 10^4*x^6 + 4^4*x^7 + x^8)*x^4/4
+ (1 + 5^5*x + 15^5*x^2 + 30^5*x^3 + 45^5*x^4 + 51^5*x^5 + 45^5*x^6 + 30^5*x^7 + 15^5*x^8 + 5^5*x^9 + x^10)*x^5/5 +...
-
{A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^m *x^k) *x^m/m)+x*O(x^n)), n)}
Showing 1-6 of 6 results.
Comments