cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186346 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2. Complement of A186347.

Original entry on oeis.org

3, 5, 7, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 125, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141
Offset: 1

Views

Author

Clark Kimberling, Feb 20 2011

Keywords

Comments

See A186350 for a discussion of adjusted joint rank sequences.

Examples

			First, write
....8....16..24..32..40..48..56..64..72..80.. (8i)
1..4..9..16...25...36......49....64.......81 (squares)
Then replace each number by its rank, where ties are settled by ranking 8i before the square:
a=(3,5,7,9,11,12,14,15,17,..)=A186346
b=(1,2,4,6,8,10,13,16,19,...)=A186347.
		

Crossrefs

Programs

  • Mathematica
    (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
     d=1/2; u=8; v=0; x=1; y=0;
    h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
    a[n_]:=n+Floor[h[n]];
    k[n_]:=(x*n^2+y*n-v+d)/u;
    b[n_]:=n+Floor[k[n]];
    Table[a[n],{n,1,120}]  (* A186346 *)
    Table[b[n],{n,1,100}]  (* A186347 *)

Formula

a(n)=n+floor(sqrt(8n-1/2))=A186346(n).
b(n)=n+floor((n^2+1/2)/8)=A186347(n).