A186347 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2. Complement of A186346.
1, 2, 4, 6, 8, 10, 13, 16, 19, 22, 26, 30, 34, 38, 43, 48, 53, 58, 64, 70, 76, 82, 89, 96, 103, 110, 118, 126, 134, 142, 151, 160, 169, 178, 188, 198, 208, 218, 229, 240, 251, 262, 274, 286, 298, 310, 323, 336, 349, 362, 376, 390, 404, 418, 433, 448, 463, 478, 494, 510, 526, 542, 559, 576, 593, 610, 628, 646, 664, 682, 701, 720, 739, 758, 778, 798, 818, 838, 859, 880, 901, 922, 944, 966, 988, 1010
Offset: 1
Examples
First, write ....8....16..24..32..40..48..56..64..72..80.. (8i) 1..4..9..16...25...36......49....64.......81 (squares) Then replace each number by its rank, where ties are settled by ranking 8i before the square: a=(3,5,7,9,11,12,14,15,17,..)=A186346 b=(1,2,4,6,8,10,13,16,19,...)=A186347.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Programs
-
Mathematica
(* See A186346. *)
-
PARI
a(n) = (n + 4)^2\8 - 2; \\ Michael Somos, Apr 05 2024
-
PARI
a(n)=n^2\8 + n \\ Charles R Greathouse IV, Apr 11 2024
Formula
a(n)=n+floor(sqrt(8n-1/2))=A186346(n).
b(n)=n+floor((n^2+1/2)/8)=A186347(n).
G.f.: x*(1 + x^2 - x^4)/((1 - x)^2 * (1 - x^4)). - Michael Somos, Apr 05 2024
Comments