cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A186348 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2. Complement of A186349.

Original entry on oeis.org

3, 6, 7, 9, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Clark Kimberling, Feb 20 2011

Keywords

Examples

			First, write
....8....16..24..32..40..48..56..64..72..80.. (8i)
1..4..9..16...25...36......49....64.......81 (squares)
Then replace each number by its rank, where ties are settled by ranking 8i after the square:
p=(3,6,7,9,11,12,14,16,17,..)=A186348=a(n).
q=(1,2,4,5,8,10,13,15,19,...)=A186349=n+floor((n^2-1)/8).
		

Crossrefs

Programs

  • Mathematica
    (* adjusted joint rank sequences p and q, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
    d=-1/2; u=8; v=0; x=1; y=0;
    h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
    a[n_]:=n+Floor[h[n]];
    Table[a[n],{n,1,120}]  (* A186348 *)
  • PARI
    a(n)=n+sqrtint(8*n) \\ Charles R Greathouse IV, Jul 05 2013

Formula

a(n) = n+floor(sqrt(8n)).

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A186347 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2. Complement of A186346.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 13, 16, 19, 22, 26, 30, 34, 38, 43, 48, 53, 58, 64, 70, 76, 82, 89, 96, 103, 110, 118, 126, 134, 142, 151, 160, 169, 178, 188, 198, 208, 218, 229, 240, 251, 262, 274, 286, 298, 310, 323, 336, 349, 362, 376, 390, 404, 418, 433, 448, 463, 478, 494, 510, 526, 542, 559, 576, 593, 610, 628, 646, 664, 682, 701, 720, 739, 758, 778, 798, 818, 838, 859, 880, 901, 922, 944, 966, 988, 1010
Offset: 1

Views

Author

Clark Kimberling, Feb 20 2011

Keywords

Comments

a(n) = a(-8-n) for all n in Z using the formula. - Michael Somos, Apr 05 2024

Examples

			First, write
....8....16..24..32..40..48..56..64..72..80.. (8i)
1..4..9..16...25...36......49....64.......81 (squares)
Then replace each number by its rank, where ties are settled by ranking 8i before the square:
a=(3,5,7,9,11,12,14,15,17,..)=A186346
b=(1,2,4,6,8,10,13,16,19,...)=A186347.
		

Crossrefs

Programs

Formula

a(n)=n+floor(sqrt(8n-1/2))=A186346(n).
b(n)=n+floor((n^2+1/2)/8)=A186347(n).
G.f.: x*(1 + x^2 - x^4)/((1 - x)^2 * (1 - x^4)). - Michael Somos, Apr 05 2024

A283394 a(n) = 3*n*(3*n + 7)/2 + 4.

Original entry on oeis.org

4, 19, 43, 76, 118, 169, 229, 298, 376, 463, 559, 664, 778, 901, 1033, 1174, 1324, 1483, 1651, 1828, 2014, 2209, 2413, 2626, 2848, 3079, 3319, 3568, 3826, 4093, 4369, 4654, 4948, 5251, 5563, 5884, 6214, 6553, 6901, 7258, 7624, 7999, 8383, 8776, 9178, 9589, 10009
Offset: 0

Views

Author

Bruno Berselli, Mar 23 2017

Keywords

Comments

Sum_{k = 0..n} (3*k + r)^3 is divisible by 3*n*(3*n + 2*r + 3)/2 + r^2: the sequence corresponds to the case r = 2 of this formula (other cases are listed in Crossrefs section).
Also, Sum_{k = 0..n} (3*k + 2)^3 / a(n) gives 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, ... (A005449).
a(n) is even if n belongs to A014601. No term is divisible by 3, 5, 7 and 11.

Crossrefs

Sequences with formula 3*n*(3*n + 2*r + 3)/2 + r^2: A038764 (r=-1), A027468 (r=0), A081271 (r=1), this sequence (r=2), A027468 (r=3; offset: -1), A080855 (r=4; offset: -2).

Programs

  • Magma
    [3*n*(3*n+7)/2+4: n in [0..50]];
    
  • Mathematica
    Table[3 n (3 n + 7)/2 + 4, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{4,19,43},50] (* Harvey P. Dale, Mar 02 2019 *)
  • Maxima
    makelist(3*n*(3*n+7)/2+4, n, 0, 50);
    
  • PARI
    a(n) = 3*n*(3*n + 7)/2 + 4; \\ Indranil Ghosh, Mar 24 2017
  • Python
    [3*n*(3*n+7)/2+4 for n in range(50)]
    
  • Sage
    [3*n*(3*n+7)/2+4 for n in range(50)]
    

Formula

O.g.f.: (4 + 7*x - 2*x^2)/(1 - x)^3.
E.g.f.: (8 + 30*x + 9*x^2)*exp(x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A081271(-n-2).
a(n) = 3*A095794(n+1) + 1.
a(n) = A034856(3*n+2) = A101881(6*n+2) = A165157(6*n+3) = A186349(6*n+3).
The inverse binomial transform yields 4, 15, 9, 0 (0 continued), therefore:
a(n) = 4*binomial(n,0) + 15*binomial(n,1) + 9*binomial(n,2).

A186346 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2. Complement of A186347.

Original entry on oeis.org

3, 5, 7, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 125, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141
Offset: 1

Views

Author

Clark Kimberling, Feb 20 2011

Keywords

Comments

See A186350 for a discussion of adjusted joint rank sequences.

Examples

			First, write
....8....16..24..32..40..48..56..64..72..80.. (8i)
1..4..9..16...25...36......49....64.......81 (squares)
Then replace each number by its rank, where ties are settled by ranking 8i before the square:
a=(3,5,7,9,11,12,14,15,17,..)=A186346
b=(1,2,4,6,8,10,13,16,19,...)=A186347.
		

Crossrefs

Programs

  • Mathematica
    (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
     d=1/2; u=8; v=0; x=1; y=0;
    h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
    a[n_]:=n+Floor[h[n]];
    k[n_]:=(x*n^2+y*n-v+d)/u;
    b[n_]:=n+Floor[k[n]];
    Table[a[n],{n,1,120}]  (* A186346 *)
    Table[b[n],{n,1,100}]  (* A186347 *)

Formula

a(n)=n+floor(sqrt(8n-1/2))=A186346(n).
b(n)=n+floor((n^2+1/2)/8)=A186347(n).
Showing 1-5 of 5 results.