cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186438 Positive numbers whose squares end in two identical digits.

Original entry on oeis.org

10, 12, 20, 30, 38, 40, 50, 60, 62, 70, 80, 88, 90, 100, 110, 112, 120, 130, 138, 140, 150, 160, 162, 170, 180, 188, 190, 200, 210, 212, 220, 230, 238, 240, 250, 260, 262, 270, 280, 288, 290, 300, 310, 312, 320, 330, 338, 340, 350, 360, 362, 370, 380, 388, 390, 400, 410, 412
Offset: 1

Views

Author

Michel Lagneau, Feb 21 2011

Keywords

Comments

The numbers are of the form : 10k, or 50k - 12, or 50k + 12, or 50k + 38.

Examples

			62 is in the sequence because 62^2 = 3844.
		

References

  • Jean Meeus, Letter to N. J. A. Sloane, Dec 26 1974.

Crossrefs

Cf. A016742 (even squares), A123912.

Programs

  • Maple
    with(numtheory):T:=array(1..10):for p from 1 to 1000 do:n:=p^2:l:=length(n):n0:=n:for
      m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :T[m]:=u:od:if T[1]=T[2]
      then printf(`%d, `,p):else fi:od:
  • Mathematica
    tidQ[n_]:=Module[{idn=IntegerDigits[n^2]},idn[[-1]]==idn[[-2]]]; Select[ Range[ 4,500],tidQ] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1},{10,12,20,30,38,40,50,60},60] (* Harvey P. Dale, Jan 25 2014 *)

Formula

G.f.: 2*x*(5*x^6+x^5+4*x^4+5*x^3+4*x^2+x+5)/((x-1)^2 * (x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Jul 02 2012]