cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A186851 Array read by antidiagonals: T(n,k) = number of n-step knight's tours on a (k+2)X(k+2) board summed over all starting positions.

Original entry on oeis.org

9, 16, 16, 25, 48, 16, 36, 96, 104, 16, 49, 160, 328, 208, 16, 64, 240, 664, 976, 400, 16, 81, 336, 1112, 2576, 2800, 800, 16, 100, 448, 1672, 5056, 9328, 8352, 1280, 16, 121, 576, 2344, 8320, 21480, 34448, 21664, 2208, 0, 144, 720, 3128, 12368, 39616, 91328
Offset: 1

Views

Author

R. H. Hardin and D. S. McNeil in the Sequence Fans Mailing List, Feb 27 2011

Keywords

Comments

Here an n-step knight's tour is a directed path with n vertices (or a self-avoiding walk with n-1 steps). - Andrew Howroyd, Jan 02 2023

Examples

			Table starts:
   9   16     25      36      49      64      81     100    121    144 ...
  16   48     96     160     240     336     448     576    720    880 ...
  16  104    328     664    1112    1672    2344    3128   4024   5032 ...
  16  208    976    2576    5056    8320   12368   17200  22816  29216 ...
  16  400   2800    9328   21480   39616   63440   92656 127264 167264 ...
  16  800   8352   34448   91328  186544  322528  498320 712080 ...
  16 1280  21664  118480  372384  847520 1584576 2596480 ...
  16 2208  57392  405040 1508784 3846192 7777808 ...
   0 3184 135184 1290112 5807488 ...
   0 4640 317296 4089632 ...
  ...
Some n=3 solutions for 5X5:
  0 0 0 0 0    0 0 0 0 1    0 0 0 0 0    0 0 0 0 0
  0 0 0 0 0    0 0 2 0 0    0 0 0 0 0    0 0 0 0 0
  0 0 1 0 0    0 0 0 0 0    0 0 3 0 0    0 0 0 0 0
  0 0 0 3 0    0 3 0 0 0    2 0 0 0 0    3 0 0 0 1
  0 2 0 0 0    0 0 0 0 0    0 0 1 0 0    0 0 2 0 0
		

Crossrefs

Column 6 is A186441.
Cf. A289204.

Programs

  • PARI
    \\ G(n) gives polynomial valid for k >= 2*n-4.
    Knights={[1,2; 1,-2; -1,2; -1,-2; 2,1; 2,-1; -2,1; -2,-1]}
    G(n,f=i->'n-(i-2)) = {
      local(x=vector(n), y=vector(n));
      my(recurse(k)=
         forstep(i=2-k%2, k-1, 2, if(x[i]==x[k] && y[i]==y[k], return(0)));
         if (k==n, f(vecmax(x)-vecmin(x))*f(vecmax(y)-vecmin(y)), sum(i=1, 8, x[k+1] = x[k]+Knights[i,1]; y[k+1]=y[k]+Knights[i,2]; self()(k+1)) );
      );
      if(n==1, recurse(1), x[1]=1; y[1]=2; 8*recurse(2))
    }
    row(m,n)={my(p=if(n>=2*m-4, G(m,i->'x-(i-2)))); vector(n, k, if(k>=2*m-4, subst(p,'x, k), G(m, i->max(0, k+2-i))))} \\ Andrew Howroyd, Jan 02 2023

Formula

Empirical, for all rows: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3,3,4,6,8,10 respectively for row in 1..6.
From Andrew Howroyd, Jan 02 2023: (Start)
The above empirical formula is correct. Equivalently T(m,n) for given m and n >= 2*m-4 is given by a quadratic polynomial in n. This is because a w X h rectangle can be placed on a k X k grid at integer coordinates in (k-w+1)*(k-h+1) ways when w and h are at most k and every knights path with m vertices spans such a rectangle with width and height at most 2*m - 1.
Sum_{i=2..(k+2)^2} T(i,k)/2 = A289204(k+2).
T(n,k) = 0 for n > (k-2)^2.
(End)
Showing 1-1 of 1 results.