A186445 The number of partitions of n in which the first part is at least four times larger than the second part.
1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 20, 25, 31, 38, 47, 57, 70, 85, 103, 124, 150, 180, 216, 258, 308, 366, 436, 516, 611, 721, 850, 1000, 1176, 1378, 1614, 1886, 2203, 2567, 2990, 3474, 4034, 4677, 5417, 6264, 7239, 8351, 9628
Offset: 0
Keywords
Examples
a(8) = #{8, 7+1, 6+1+1, 5+1+1+1, 4+1+1+1+1} = 5. a(10) = #{10, 9+1, 8+2, 8+1+1, 7+1+1+1, 6+1+1+1+1, 5+1+1+1+1+1, 4+1+1+1+1+1+1} = 8.
Programs
-
Mathematica
Table[PartitionsP[n] - PartitionsP[n-2] - PartitionsP[n-3] - PartitionsP[n-4] + PartitionsP[n-5] + PartitionsP[n-6] + PartitionsP[n-7] - PartitionsP[n-9], {n,0,50}] (* Vaclav Kotesovec, Jul 05 2025 *)
Formula
a(n) = p(n)-p(n-2)-p(n-3)-p(n-4)+p(n-5)+p(n-6)+p(n-7)-p(n-9), where p(n) = A000041(n).
a(n) ~ Pi^3 * exp(Pi*sqrt(2*n/3)) / (3*sqrt(2)*n^(5/2)) * (1 - (5*sqrt(6)/Pi + 109*Pi/(24*sqrt(6)))/sqrt(n)). - Vaclav Kotesovec, Jul 05 2025