cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186445 The number of partitions of n in which the first part is at least four times larger than the second part.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 20, 25, 31, 38, 47, 57, 70, 85, 103, 124, 150, 180, 216, 258, 308, 366, 436, 516, 611, 721, 850, 1000, 1176, 1378, 1614, 1886, 2203, 2567, 2990, 3474, 4034, 4677, 5417, 6264, 7239, 8351, 9628
Offset: 0

Views

Author

Mircea Merca, Feb 21 2011

Keywords

Examples

			a(8) = #{8, 7+1, 6+1+1, 5+1+1+1, 4+1+1+1+1} = 5.
a(10) = #{10, 9+1, 8+2, 8+1+1, 7+1+1+1, 6+1+1+1+1, 5+1+1+1+1+1, 4+1+1+1+1+1+1} = 8.
		

Crossrefs

Cf. A000041.
Partial sums of A185325.

Programs

  • Mathematica
    Table[PartitionsP[n] - PartitionsP[n-2] - PartitionsP[n-3] - PartitionsP[n-4] + PartitionsP[n-5] + PartitionsP[n-6] + PartitionsP[n-7] - PartitionsP[n-9], {n,0,50}] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = p(n)-p(n-2)-p(n-3)-p(n-4)+p(n-5)+p(n-6)+p(n-7)-p(n-9), where p(n) = A000041(n).
a(n) ~ Pi^3 * exp(Pi*sqrt(2*n/3)) / (3*sqrt(2)*n^(5/2)) * (1 - (5*sqrt(6)/Pi + 109*Pi/(24*sqrt(6)))/sqrt(n)). - Vaclav Kotesovec, Jul 05 2025