cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A139039 A triangular central symmetric sequence based on the sequence A003269: if m <= floor(n/2), t(n,m) = A003269(m+2), otherwise t(n,m) = A003269(n - (m+2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, May 31 2008

Keywords

Comments

Row sums: {1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 20, ...}. [Is this A186445 or A080078? - N. J. A. Sloane, Feb 10 2013]
The A003269 sequence is pushed back twice, so that the triangle is not almost all ones.

Examples

			{1},
{1, 1},
{1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1},
{1, 1, 1, 2, 1, 1, 1},
{1, 1, 1, 2, 2, 1, 1, 1},
{1, 1, 1, 2, 3, 2, 1, 1, 1},
{1, 1, 1, 2, 3, 3, 2, 1, 1, 1},
{1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[a]; a[ -2] = 0; a[ -1] = 1; a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1] + a[n - 4]; (* A003269 *) Table[If[m <= Floor[n/2],a[m],a[n-m] ] ,{n,0,10},{m,0,n}]

Formula

a(n) = a(n-1) + a(n-4); t(n,m) = a(m) if m <= floor(n/2), a(n-m) otherwise.

Extensions

Non-ASCII characters removed and Mathematica code corrected by Wouter Meeussen, Feb 10 2013

A213424 Number of partitions of n in which all parts are >= 2 and the largest part occurs at least five times.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 4, 6, 6, 8, 8, 12, 10, 15, 15, 19, 21, 26, 26, 34, 36, 45, 47, 59, 61, 76, 83, 97, 107, 128, 137, 165, 179, 210, 231, 271, 296, 345, 380, 438, 485, 561, 614, 708, 783, 893, 991, 1129, 1246, 1420, 1572, 1781
Offset: 10

Views

Author

Mircea Merca, Jun 11 2012

Keywords

Examples

			For n = 20 we have three partitions: {[4+4+4+4+4], [3+3+3+3+3+3+2], [2+2+2+2+2+2+2+2+2+2]}, so a(20) = 3.
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; Drop[CoefficientList[Series[(1 - x)^2*(1 - x^2)*(1 - x^3)*(1 - x^4) / Product[1 - x^k, {k, 1, nmax}], {x, 0, nmax}], x], 10] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = A186445(n) - 2*A186445(n-1) + A186445(n-2).
G.f.: (1-x)*Product_{k>4} 1/(1-x^k).
a(n) ~ Pi^5 * exp(Pi*sqrt(2*n/3))/ (18*sqrt(2)*n^(7/2)). - Vaclav Kotesovec, Jul 05 2025
Showing 1-2 of 2 results.