A186492 Recursive triangle for calculating A186491.
1, 0, 1, 2, 0, 3, 0, 14, 0, 15, 28, 0, 132, 0, 105, 0, 5556, 0, 1500, 0, 945, 1112, 0, 10668, 0, 1995, 0, 10395, 0, 43784, 0, 212940, 0, 304290, 0, 135135, 87568, 0, 1408992, 0, 4533480, 0, 5239080, 0, 2027025
Offset: 0
Examples
Table begins n\k|.....0.....1......2.....3......4.....5......6 ================================================= 0..|.....1 1..|.....0.....1 2..|.....2.....0......3 3..|.....0....14......0....15 4..|....28.....0....132.....0....105 5..|.....0...556......0..1500......0...945 6..|..1112.....0..10668.....0..19950.....0..10395 .. Examples of recurrence relation T(4,2) = 3*T(3,1) + 6*T(3,3) = 3*14 + 6*15 = 132; T(6,4) = 7*T(5,3) + 10*T(5,5) = 7*1500 + 10*945 = 19950.
Links
- C. V. Sukumar and A. Hodges, Quantum algebras and parity-dependent spectra, Proc. R. Soc. A (2007) 463, 2415-2427.
Programs
-
Mathematica
R[0][] = 1; R[1][u] = u; R[n_][u_] := R[n][u] = 2(1+u^2) R[n-1]'[u] + u R[n-1][u]; Table[CoefficientList[R[n][u], u], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 13 2019 *)
Formula
Recurrence relation
(1)... T(n,k) = (2*k-1)*T(n-1,k-1)+(2*k+2)*T(n-1,k+1).
GENERATING FUNCTION
E.g.f. (Compare with the e.g.f. of A104035):
(2)... 1/sqrt(cos(2*t)-u*sin(2*t)) = sum {n = 0..inf } R(n,u)*t^n/n! = 1 + u*t + (2+3*u^2)*t^2/2! + (14*u+15*u^3)*t^3/3!+....
ROW POLYNOMIALS
The row polynomials R(n,u) begin
... R(1,u) = u
... R(2,u) = 2+3*u^2
... R(3,u) = 14*u+15*u^3
... R(4,u) = 28+132*u^2+105u^4.
They satisfy the recurrence relation
(3)... R(n+1,u) = 2*(1+u^2)*d/du(R(n,u))+u*R(n,u) with starting value R(0,u) = 1.
Compare with Formula (1) of A104035 for the polynomials Q_n(u).
The polynomials R(n,u) are related to the shifted row polynomials A(n,u) of A142459 via
(4)... R(n,u) = ((u+I)/2)^n*A(n+1,(u-I)/(u+I))
with the inverse identity
(5)... A(n+1,u) = (-I)^n*(1-u)^n*R(n,I*(1+u)/(1-u)),
where {A(n,u)}n>=1 begins [1,1+u,1+10*u+u^2,1+59*u+59*u^2+u^3,...] and I = sqrt(-1).
Comments