cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186492 Recursive triangle for calculating A186491.

Original entry on oeis.org

1, 0, 1, 2, 0, 3, 0, 14, 0, 15, 28, 0, 132, 0, 105, 0, 5556, 0, 1500, 0, 945, 1112, 0, 10668, 0, 1995, 0, 10395, 0, 43784, 0, 212940, 0, 304290, 0, 135135, 87568, 0, 1408992, 0, 4533480, 0, 5239080, 0, 2027025
Offset: 0

Views

Author

Peter Bala, Feb 22 2011

Keywords

Comments

The table entries are defined by a recurrence relation (see below).
This triangle can be used to calculate the entries of A186491: the nonzero entries of the first column of the triangle give A186491.
PRODUCTION MATRIX
The production matrix P for this triangle is the bidiagonal matrix with the sequence [2,4,6,...] on the main subdiagonal, the sequence [1,3,5,...] on the main superdiagonal and 0's elsewhere: the first row of P^n is the n-th row of this triangle.

Examples

			Table begins
n\k|.....0.....1......2.....3......4.....5......6
=================================================
0..|.....1
1..|.....0.....1
2..|.....2.....0......3
3..|.....0....14......0....15
4..|....28.....0....132.....0....105
5..|.....0...556......0..1500......0...945
6..|..1112.....0..10668.....0..19950.....0..10395
..
Examples of recurrence relation
T(4,2) = 3*T(3,1) + 6*T(3,3) = 3*14 + 6*15 = 132;
T(6,4) = 7*T(5,3) + 10*T(5,5) = 7*1500 + 10*945 = 19950.
		

Crossrefs

Programs

  • Mathematica
    R[0][] = 1; R[1][u] = u;
    R[n_][u_] := R[n][u] = 2(1+u^2) R[n-1]'[u] + u R[n-1][u];
    Table[CoefficientList[R[n][u], u], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 13 2019 *)

Formula

Recurrence relation
(1)... T(n,k) = (2*k-1)*T(n-1,k-1)+(2*k+2)*T(n-1,k+1).
GENERATING FUNCTION
E.g.f. (Compare with the e.g.f. of A104035):
(2)... 1/sqrt(cos(2*t)-u*sin(2*t)) = sum {n = 0..inf } R(n,u)*t^n/n! = 1 + u*t + (2+3*u^2)*t^2/2! + (14*u+15*u^3)*t^3/3!+....
ROW POLYNOMIALS
The row polynomials R(n,u) begin
... R(1,u) = u
... R(2,u) = 2+3*u^2
... R(3,u) = 14*u+15*u^3
... R(4,u) = 28+132*u^2+105u^4.
They satisfy the recurrence relation
(3)... R(n+1,u) = 2*(1+u^2)*d/du(R(n,u))+u*R(n,u) with starting value R(0,u) = 1.
Compare with Formula (1) of A104035 for the polynomials Q_n(u).
The polynomials R(n,u) are related to the shifted row polynomials A(n,u) of A142459 via
(4)... R(n,u) = ((u+I)/2)^n*A(n+1,(u-I)/(u+I))
with the inverse identity
(5)... A(n+1,u) = (-I)^n*(1-u)^n*R(n,I*(1+u)/(1-u)),
where {A(n,u)}n>=1 begins [1,1+u,1+10*u+u^2,1+59*u+59*u^2+u^3,...] and I = sqrt(-1).