cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186505 Antidiagonal sums of triangle A186084.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 8, 9, 14, 18, 25, 34, 46, 64, 86, 119, 162, 222, 304, 416, 571, 780, 1071, 1466, 2010, 2754, 3775, 5175, 7092, 9724, 13329, 18274, 25052, 34347, 47091, 64562, 88522, 121369, 166411, 228168, 312848, 428959, 588163
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2011

Keywords

Comments

Triangle A186084 is the number of 1-dimensional sandpiles with n grains and base length k.
The g.f. T(x,y) of triangle A186084 satisfies: T(x,y) = 1/(1 - x*y - x^3*y^2*T(x,x*y)); therefore, the g.f. of this sequence is T(x,x).

Examples

			G.f.: 1 + x^2 + x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 4*x^10 +...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, `if`(i=1, 1, 0),
          `if`(n<0 or i<1, 0, expand(x*add(b(n-i, i+j), j=-1..1)) ))
        end:
    a:= n-> add(coeff(b(n-k, 1), x, k), k=0..n):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jul 24 2013
  • Mathematica
    m = 100;
    f[i_] := If[i == 0, 1, -x^(2i+3)];
    g[i_] := 1 - x^(i+2);
    ContinuedFractionK[f[i], g[i], {i, 0, Sqrt[m] // Ceiling}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Oct 14 2019, after Sergei N. Gladkovskii *)
  • PARI
    {a(n)=local(Txy=1+x*y); for(i=1, n, Txy=1/(1-x*y-x^3*y^2*subst(Txy, y, x*y+x*O(x^n)))); polcoeff(subst(Txy,y,x), n, x)}
    
  • PARI
    N = 66; x = 'x + O('x^N);
    Q(k) = if(k>N, 1, 1/x^(k+1) - 1 - 1/Q(k+1) );
    gf = 1/x^3 - (Q(0) + 1)/x^2;
    Vec(gf) \\ Joerg Arndt, May 07 2013

Formula

G.f.: (1 - x/(1 - 1/B(x)))/x^3 where B(x) equals the g.f. of the row sums of triangle A186084.
G.f.: 1/(1-x^2 - x^5/(1-x^3 - x^7/(1-x^4 - x^9/(1-x^5 - x^11/(1-x^6 - x^13/(1-...)))))) (continued fraction).
G.f.: 1/(1-x^2/(1-x^3/(1-x^7/(1-x^4/(1-x^5/(1-x^11/(1-x^6/(1 -x^7/(1-x^15/(1-...)))))))))) (continued fraction).
G.f.: 1/x^3 - (Q(0) + 1)/x^2, where Q(k)= 1/x^(k+1) - 1 - 1/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 07 2013
a(n) ~ c * d^n, where d = 1.3712018040437285..., c = 0.154355235026898... . - Vaclav Kotesovec, Sep 10 2014