A186505 Antidiagonal sums of triangle A186084.
1, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 8, 9, 14, 18, 25, 34, 46, 64, 86, 119, 162, 222, 304, 416, 571, 780, 1071, 1466, 2010, 2754, 3775, 5175, 7092, 9724, 13329, 18274, 25052, 34347, 47091, 64562, 88522, 121369, 166411, 228168, 312848, 428959, 588163
Offset: 0
Keywords
Examples
G.f.: 1 + x^2 + x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 4*x^10 +...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, `if`(i=1, 1, 0), `if`(n<0 or i<1, 0, expand(x*add(b(n-i, i+j), j=-1..1)) )) end: a:= n-> add(coeff(b(n-k, 1), x, k), k=0..n): seq(a(n), n=0..70); # Alois P. Heinz, Jul 24 2013
-
Mathematica
m = 100; f[i_] := If[i == 0, 1, -x^(2i+3)]; g[i_] := 1 - x^(i+2); ContinuedFractionK[f[i], g[i], {i, 0, Sqrt[m] // Ceiling}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Oct 14 2019, after Sergei N. Gladkovskii *)
-
PARI
{a(n)=local(Txy=1+x*y); for(i=1, n, Txy=1/(1-x*y-x^3*y^2*subst(Txy, y, x*y+x*O(x^n)))); polcoeff(subst(Txy,y,x), n, x)}
-
PARI
N = 66; x = 'x + O('x^N); Q(k) = if(k>N, 1, 1/x^(k+1) - 1 - 1/Q(k+1) ); gf = 1/x^3 - (Q(0) + 1)/x^2; Vec(gf) \\ Joerg Arndt, May 07 2013
Formula
G.f.: (1 - x/(1 - 1/B(x)))/x^3 where B(x) equals the g.f. of the row sums of triangle A186084.
G.f.: 1/(1-x^2 - x^5/(1-x^3 - x^7/(1-x^4 - x^9/(1-x^5 - x^11/(1-x^6 - x^13/(1-...)))))) (continued fraction).
G.f.: 1/(1-x^2/(1-x^3/(1-x^7/(1-x^4/(1-x^5/(1-x^11/(1-x^6/(1 -x^7/(1-x^15/(1-...)))))))))) (continued fraction).
G.f.: 1/x^3 - (Q(0) + 1)/x^2, where Q(k)= 1/x^(k+1) - 1 - 1/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 07 2013
a(n) ~ c * d^n, where d = 1.3712018040437285..., c = 0.154355235026898... . - Vaclav Kotesovec, Sep 10 2014
Comments