cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A186086 Beastly primes (version 1): either 666 followed by 0's and a 1 or 7 at the right end or a palindrome with 666 in the center, 0's surrounding these digits, and 1 or 7 at both ends.

Original entry on oeis.org

6661, 16661, 66601, 76667, 700666007, 6660000000001, 666000000000001, 700000666000007, 70000006660000007, 6660000000000000000000000007, 66600000000000000000000000007, 1000000000000066600000000000001
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 12 2011

Keywords

Comments

Differs from A131645 in that 26669, 46663, 56663, 66617, 66629, 66643, 66653, 66683, 66697, 96661, 96667, 106661, 106663, 106669, 116663, 146669, 166601, 166603, 166609, 166613, 166619, 166627, 166631, 166643, 166657, 166667, 166669, 166679, are not included here.
76667 is the largest beastly prime that does not contain the digit "0".

Crossrefs

Programs

  • Mathematica
    e = 14; p = 666*10^n + 1; q = (10^(n + 2) + 666)*10^n + 1; Select[Union[Table[p, {n, 2*e}], Table[p + 6, {n, 2*e}], Table[q, {n, e}], Table[q + 6*10^(2*n + 2) + 6, {n, e}]], PrimeQ] (* Arkadiusz Wesolowski, Sep 21 2011 *)
    Module[{nn=35,bp1,bp2,bp3,bp4}, bp1=FromDigits/@ Table[Join[PadRight[ {6,6,6},n1,0],{1}],{n1,3,nn}]; bp2=FromDigits/@ Table[Join[ PadRight[ {6,6,6},n2,0],{7}], {n2,3,nn}]; bp3=FromDigits/@ Table[Join[PadRight[ {1},n3,0], {6,6,6},PadLeft[ {1},n3,0]],{n3,1,nn/2}];bp4=FromDigits/@ Table[Join[PadRight[{7},n3,0],{6,6,6}, PadLeft[ {7},n3,0]],{n3,1,nn/2}]; Select[Sort[Join[bp1,bp2,bp3,bp4]],PrimeQ]] (* Harvey P. Dale, Jan 18 2017 *)

Extensions

Edited by N. J. A. Sloane, Feb 12 2011
a(10)-a(12) from Charles R Greathouse IV, Feb 12 2011

A046720 Subsequence of beastly primes (A186086) that are palindromes that begin and end with 7.

Original entry on oeis.org

76667, 700666007, 700000666000007, 70000006660000007
Offset: 1

Views

Author

Keywords

Comments

Next term is 7_{0}^48_666_{0}^48_7, containing 101 digits, and is too large to include here.
The number of digits in the terms is 2*A186521(n)+3: 5, 9, 15, 17, 101, 1159, 1589, 2647, 2787, 4787, 6135, 26961 (some correspond to probable primes). - Jens Kruse Andersen, Jul 13 2014

Crossrefs

Programs

  • Mathematica
    Select[Table[(7*10^(n + 2) + 666)*10^n + 7, {n, 7}], PrimeQ] (* Arkadiusz Wesolowski, Sep 08 2011 *)
    Select[Table[With[{s=PadRight[{7},n,0]},FromDigits[Join[s,{6,6,6},Reverse[s]]]],{n,8}],PrimeQ] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(n) = (7*10^(k+2)+666)*10^k+7, where k = A186521(n). - Jens Kruse Andersen, Jul 13 2014

Extensions

Definition revised by N. J. A. Sloane, Feb 14 2011
Showing 1-2 of 2 results.