cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186526 Number T(n,k) of permutations on n elements with exactly k 3-cycles; triangle read by rows.

Original entry on oeis.org

1, 1, 2, 4, 2, 16, 8, 80, 40, 520, 160, 40, 3640, 1120, 280, 29120, 8960, 2240, 259840, 87360, 13440, 2240, 2598400, 873600, 134400, 22400, 28582400, 9609600, 1478400, 246400, 343235200, 114329600, 19219200, 1971200, 246400, 4462057600, 1486284800, 249849600, 25625600, 3203200, 62468806400, 20807987200, 3497894400, 358758400, 44844800, 936987251200, 312344032000, 52019968000, 5829824000, 448448000, 44844800
Offset: 0

Views

Author

Dennis P. Walsh, Feb 23 2011

Keywords

Comments

Triangle T(n,k) with 0<=k<=floor(n/3) gives the number of permutations in the symmetric group Sn that have exactly k cycles of length 3. The sum of T(n,k) over all k equals n!.

Examples

			For n=4 and k=1, T(4,1)=8 since there are 8 permutations on 4 elements with 1 cycle of length 3, namely, (abc)(d), (acb)(d), (abd)(c), (adb)(c), (acd)(b), (adc)(b), (bcd)(a), and (bdc)(a).
Triangle T(n,k) begins:
:     1;
:     1;
:     2;
:     4,    2;
:    16,    8;
:    80,   40;
:   520,  160,   40;
:  3640, 1120,  280;
: 29120, 8960, 2240;
: ...
		

References

  • Arratia, R. and Tavaré, S. (1992). The cycle structure of random permutations. Ann. Probab. 20 1567-1591.

Crossrefs

Programs

  • Maple
    seq(seq(n!*(1/3)^x/x!*sum((-1/3)^j/j!,j=0..(floor(n/3)-x)),x=0..floor(n/3)),n=0..15);
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
          `if`(i=3, x, 1)*binomial(n-1, i-1)*(i-1)!, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 25 2016
  • Mathematica
    nn = 8; Range[0, nn]! CoefficientList[
       Series[Exp[x^3/3 (y - 1)]/(1 - x), {x, 0, nn}], {x, y}] // Grid

Formula

T(n,k) = (n!(1/3)^k)/k!*sum((-1/3)^j/j!, j=0..(m-k)) where m=floor(n/3).
E.g.f.: exp(x^3/3*(y-1))/(1-x). - Geoffrey Critzer, Aug 26 2012.