cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186635 Primes p such that the decimal expansion of 1/p has a periodic part of odd length.

Original entry on oeis.org

2, 3, 5, 31, 37, 41, 43, 53, 67, 71, 79, 83, 107, 151, 163, 173, 191, 199, 227, 239, 271, 277, 283, 307, 311, 317, 347, 359, 397, 431, 439, 443, 467, 479, 523, 547, 563, 587, 599, 613, 631, 643, 683, 719, 733, 751, 757, 773, 787, 797, 827, 839, 853, 883, 907, 911, 919, 947, 991, 1013, 1031, 1039, 1093, 1123, 1151, 1163, 1187
Offset: 1

Views

Author

Jani Melik, Feb 24 2011

Keywords

Comments

Interestingly, the initial terms of A040119 (Primes p such that x^4 = 10 has a solution mod p) are identical to the initial terms of this sequence except for 241 which is a term of A040119 but not of A186635. [John W. Layman, Feb 25 2011]
There are many numbers in A040119 that are not here: 241, 641, 769, 809, 1009, 1409, 1601, 1721.... - T. D. Noe, Feb 25 2011

Crossrefs

Cf. A002371, A048595, A028416 (complement in the primes), A040119.

Programs

  • Maple
    Ax := proc(n) local st:
    st := ithprime(n):
    if (modp(numtheory[order](10,st),2) <> 0) then
       RETURN(st)
    fi: end:  seq(Ax(n), n=1..200);
  • Mathematica
    Union[{2, 5}, Select[Prime[Range[200]], OddQ[Length[RealDigits[1/#][[1, 1]]]] &]]
  • PARI
    select( {is_A186635(n)=isprime(n) && (n<7 || znorder(Mod(10, n))%2)}, [0..1234]) \\ M. F. Hasler, Nov 19 2024
    
  • Python
    from sympy import isprime, n_order
    is_A186635 = lambda n: isprime(n) and (n<7 or n_order(10, n)%2)
    [n for n in range(1234) if is_A186635(n)] # M. F. Hasler, Nov 19 2024