A186635 Primes p such that the decimal expansion of 1/p has a periodic part of odd length.
2, 3, 5, 31, 37, 41, 43, 53, 67, 71, 79, 83, 107, 151, 163, 173, 191, 199, 227, 239, 271, 277, 283, 307, 311, 317, 347, 359, 397, 431, 439, 443, 467, 479, 523, 547, 563, 587, 599, 613, 631, 643, 683, 719, 733, 751, 757, 773, 787, 797, 827, 839, 853, 883, 907, 911, 919, 947, 991, 1013, 1031, 1039, 1093, 1123, 1151, 1163, 1187
Offset: 1
Programs
-
Maple
Ax := proc(n) local st: st := ithprime(n): if (modp(numtheory[order](10,st),2) <> 0) then RETURN(st) fi: end: seq(Ax(n), n=1..200);
-
Mathematica
Union[{2, 5}, Select[Prime[Range[200]], OddQ[Length[RealDigits[1/#][[1, 1]]]] &]]
-
PARI
select( {is_A186635(n)=isprime(n) && (n<7 || znorder(Mod(10, n))%2)}, [0..1234]) \\ M. F. Hasler, Nov 19 2024
-
Python
from sympy import isprime, n_order is_A186635 = lambda n: isprime(n) and (n<7 or n_order(10, n)%2) [n for n in range(1234) if is_A186635(n)] # M. F. Hasler, Nov 19 2024
Comments