cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186637 Semiprime powers with special exponents: k^(j-1) where both j and k are arbitrary semiprime numbers.

Original entry on oeis.org

64, 216, 729, 1000, 1024, 2744, 3375, 7776, 9261, 10648, 15625, 17576, 35937, 39304, 42875, 54872, 59049, 59319, 65536, 97336, 100000, 117649, 132651, 166375, 185193, 195112, 238328, 262144, 274625, 328509, 405224, 456533, 537824, 551368, 614125, 636056, 658503, 753571, 759375, 804357, 830584, 857375
Offset: 1

Views

Author

Jonathan Vos Post, Feb 24 2011

Keywords

Comments

Semiprime analog of A036454: prime powers with special exponents: q^(p-1) where both p and q are arbitrary prime numbers.

Examples

			a(1) = smallest semiprime to power of (smallest semiprime - 1) = 4^(4-1) = 4^3 = 64.
		

Crossrefs

Programs

  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, factorint
    def A186637(n):
        def A072000(n): return int(-((t:=primepi(s:=isqrt(n)))*(t-1)>>1)+sum(primepi(n//p) for p in primerange(s+1)))
        def f(x): return int(n+x-sum(A072000(integer_nthroot(x, p-1)[0]) for p in range(4,x.bit_length()+1) if sum(factorint(p).values())==2))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

{a(n)} = {A001358(i) ^ A186621(j)}.
{a(n)} = {a^b where a and b are elements of A001358} = {(p*q)^((r*s)-1) for primes p, q, r, s, not necessarily distinct}.