A186637 Semiprime powers with special exponents: k^(j-1) where both j and k are arbitrary semiprime numbers.
64, 216, 729, 1000, 1024, 2744, 3375, 7776, 9261, 10648, 15625, 17576, 35937, 39304, 42875, 54872, 59049, 59319, 65536, 97336, 100000, 117649, 132651, 166375, 185193, 195112, 238328, 262144, 274625, 328509, 405224, 456533, 537824, 551368, 614125, 636056, 658503, 753571, 759375, 804357, 830584, 857375
Offset: 1
Examples
a(1) = smallest semiprime to power of (smallest semiprime - 1) = 4^(4-1) = 4^3 = 64.
Programs
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot, factorint def A186637(n): def A072000(n): return int(-((t:=primepi(s:=isqrt(n)))*(t-1)>>1)+sum(primepi(n//p) for p in primerange(s+1))) def f(x): return int(n+x-sum(A072000(integer_nthroot(x, p-1)[0]) for p in range(4,x.bit_length()+1) if sum(factorint(p).values())==2)) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024
Comments