A186643 The number of divisors d of n which are either d=1 or for which the highest power d^k dividing n has odd exponent k.
1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 5, 2, 4, 4, 3, 2, 5, 2, 5, 4, 4, 2, 8, 2, 4, 4, 5, 2, 8, 2, 5, 4, 4, 4, 6, 2, 4, 4, 8, 2, 8, 2, 5, 5, 4, 2, 8, 2, 5, 4, 5, 2, 8, 4, 8, 4, 4, 2, 11, 2, 4, 5, 5, 4, 8, 2, 5, 4, 8, 2, 10, 2, 4, 5, 5, 4, 8, 2, 8
Offset: 1
Examples
For n=16, the oex divisors are 1, 8 with 8^1|16, and 16 with 16^1|16. Therefore, a(16)=3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
highpp := proc(n,d) if n mod d <> 0 then 0; else nshf := n ; a := 0 ; while nshf mod d = 0 do nshf := nshf /d ; a := a+1 ; end do: a; end if; end proc: isoex := proc(d,n) d= 1 or (n mod d = 0 and type(highpp(n,d),'odd') ) ; end proc: A186643 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if isoex(d,n) then a := a+1 ; end if; end do: a ; end proc: # R. J. Mathar, Mar 18 2011
-
Mathematica
Table[DivisorSum[n, 1 &, Or[# == 1, OddQ@ IntegerExponent[n, #]] &], {n, 80}] (* Michael De Vlieger, May 28 2017 *)
-
PARI
a(n) = sumdiv(n, d, (d==1) || (valuation(n, d) % 2)); \\ Michel Marcus, Feb 06 2016
Formula
a(n) >= A037445(n).
Comments