A186645 Numbers k such that 2^(k-1) == 1 + b*k (mod k^2), where b divides k-1.
3, 7, 11, 13, 19, 29, 31, 37, 71, 127, 379, 491, 2047, 2633, 2659, 3373, 8191, 13249, 26893, 70687, 74597, 87211, 131071, 184511, 524287, 642581, 1897121, 2676301, 2703739, 8388607, 15456151, 52368101, 102785339, 126233057, 193481677, 536870911, 856645921, 1552107133, 2001907169, 2147483647, 2935442621, 3668158729, 6004262437
Offset: 1
Keywords
Programs
-
Maple
isA186645 := proc(n) if Power(2,n-1) mod n = 1 then x := Power(2,n-1) mod (n^2) ; b := (x-1)/n ; if b>0 then if modp(n-1,b) = 0 then true; else false; end if; else false; end if; else false; end if; end proc: for n from 1 do if isA186645(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Mar 09 2011
Extensions
Edited and more terms added by Max Alekseyev, Mar 14 2011
Comments