A186694 Numbers ending in 1, 3, 7 or 9 such that changing any one decimal digit produces a composite number.
212159, 294001, 505447, 584141, 595631, 604171, 872897, 971767, 1062599, 1203623, 1282529, 1293671, 1524181, 1566691, 1702357, 1830661, 2017963, 2474431, 2690201, 3085553, 3326489, 3716213, 3964169, 4103917, 4134953, 4173921, 4310617, 4376703
Offset: 1
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1500
- Chris Caldwell, The Prime Glossary, Weakly prime
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 212159
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 17171...58369 (1000-digits)
- Terence Tao, A remark on primality testing and decimal expansions, Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413.
Programs
-
Mathematica
primeProof[n_] := Module[{d, e, isPP, num}, d=IntegerDigits[n]; isPP=True; Do[e=d; e[[i]]=j; num=FromDigits[e]; If[num != n && PrimeQ[num], isPP=False; Break[]], {i, Length[d]}, {j, 0, 9}]; isPP]; Select[Range[1, 1000000, 2], Mod[#, 5] > 0 && primeProof[#] &] (* T. D. Noe, Feb 26 2011 *)
Comments