A186706 Decimal expansion of the Integral of Dedekind Eta(x*I) from x = 0..oo.
3, 6, 2, 7, 5, 9, 8, 7, 2, 8, 4, 6, 8, 4, 3, 5, 7, 0, 1, 1, 8, 8, 1, 5, 6, 5, 1, 5, 2, 8, 4, 3, 1, 1, 4, 6, 4, 5, 6, 8, 1, 3, 2, 4, 9, 6, 1, 8, 5, 4, 8, 1, 1, 5, 1, 1, 3, 9, 7, 6, 9, 8, 7, 0, 7, 7, 6, 2, 4, 6, 3, 6, 2, 2, 5, 2, 7, 0, 7, 7, 6, 7, 3, 6, 8, 2, 4, 9, 9, 7, 6, 4, 2, 4, 1, 2, 0, 3, 3, 7, 7, 1, 2, 4, 4
Offset: 1
Examples
3.627598728468435701188156515284311464568132496185481151139769870776...
References
- Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
Links
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Am. Math. Monthly 92 (7) (1985) 449.
- Michael I. Shamos, A catalog of the real numbers, (2007). See p. 511.
- Eric W. Weisstein's World of Mathematics, Dedekind Eta Function.
Programs
-
Mathematica
RealDigits[2 Pi/Sqrt[3], 10, 111][[1]] (* Robert G. Wilson v, Nov 18 2012 *)
-
PARI
intnum(x=1e-7,1e6,eta(x*I,1)) \\ Charles R Greathouse IV, Feb 26 2011
Formula
Equals 2*Pi/sqrt(3), 2 times A093602, and in consequence equal to Sum_{m>=1} 3^m/(m*binomial(2m,m)) according to Lehmer. - R. J. Mathar, Jul 24 2012
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} log(1 + 1/x^3) dx.
Equals Integral_{x=-oo..oo} exp(x/3)/(exp(x) + 1) dx. (End)
Equals Integral_{x=0..2*Pi} 1/(2 + sin(x)) dx; since for a>1: Integral_{x=0..2*Pi} 1/(a + sin(x)) dx = 2*Pi/sqrt(a^2-1). - Bernard Schott, Feb 18 2023
Equals 4*A093766. - Omar E. Pol, Dec 30 2023
From Stefano Spezia, Jun 05 2025: (Start)
Equals Beta(1/3,2/3).
Equals Integral_{x=-oo..oo} 1/(x^2 + x + 1) dx.
Equals 2*Integral_{x=0..oo} log(1 + x^3)/x^3 dx.
Equals Integral_{x=0..oo} log(1 + 4/(x*(x + 2))) dx. (End)
Comments